[1]李志杰,宋晶,赵洲,等.吹淤取样扰动的数值分析——层理分析法[J].水文地质工程地质,2020,47(2):120-125.[doi:10.16030/j.cnki.issn.1000-3665.201909023]
 LI Zhijie,SONG Jing,ZHAO Zhou,et al.Sample disturbance numerical analysis of hydraulically dredged mud sampling——bedding analysis method[J].Hydrogeology & Engineering Geology,2020,47(2):120-125.[doi:10.16030/j.cnki.issn.1000-3665.201909023]
点击复制

吹淤取样扰动的数值分析——层理分析法()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
120-125
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
Sample disturbance numerical analysis of hydraulically dredged mud sampling——bedding analysis method
文章编号:
1000-3665(2020)02-0120-06
作者:
李志杰1宋晶1234赵洲1杨守颖1黄坚森1
1.中山大学地球科学与工程学院,广东 广州510275; 2.广东省地球动力作用与地质灾害重点实验室, 广东 广州510275;3.广东省地质过程与矿产资源探查重点实验室,广东 广州510275;4.南方海洋科学与技术省实验室,广东 珠海519000
Author(s):
LI Zhijie1 SONG Jing1234 ZHAO Zhou1 YANG Shouying1 HUANG Jiansen1
1.School of Earth Sciences and Engineering,Sun Yat-Sen University, Guangzhou,Guangdong510275, China;2.Guangdong Provincial Key Lab of Geodynamics and Geohazards, Guangzhou,Guangdong510275, China;3.Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resource Exploration, Guangzhou,Guangdong510275, China;4.Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai,Guangdong519000, China
关键词:
吹淤取样离散元数值模拟特征拐点拟合曲面拟合系数扰动区域
Keywords:
hydraulically dredged mud sampling discrete element numerical simulation characteristic inflection points fitting surface fitting coefficient disturbed area
分类号:
TU411.99;TU414
DOI:
10.16030/j.cnki.issn.1000-3665.201909023
文献标志码:
A
摘要:
航道疏浚淤泥通过吹填成为了目前扩充城市土地的主要手段之一,分析吹填淤泥样品的扰动情况是工程的关键环节。本文基于吹填淤泥颗粒流3D模型,研究了取土器贯入过程对样品结构的扰动特征,提出了通过拟合的旋转抛物面来评价样品结构扰动的微观信息。其中:层理拟合曲面表征样品的表观变形,结构性拟合曲面的系数量化界定样品的微扰动区与破坏区。该模拟试验能够为工程地质的评价提供参考依据,优化取土器的设计参数,减少实际工况中过于保守的设计和施工产生的费用。试验结果表明:土样颗粒整体表现为向上的微隆起且层理呈倒U型分布,不同层理的扰动程度不同,同一层理的不同部位扰动程度也不同;层理的表观变形可用旋转抛物面公式拟合,各层理的特征拐点分布规律亦可用旋转抛物面公式拟合;曲面外的区域为强扰动区,曲面内的区域为微扰动区,这两个区域的体积积分占比可作为样品原状性评价的参考依据。
Abstract:
Dredging of the channel has become one of the main means of expanding urban land through dredging. Analyzing the disturbance of dredging samples is a key part of the project. Based on the particle flow 3D model, we studied the disturbance characteristics of the sample structure during the penetration and proposed a fitting rotating paraboloid to evaluate the microscopic information of sample structure disturbance. Among them: the layered fitting surface characterizes the apparent deformation of the sample, and the coefficient of the structurally fitted surface quantizes the micro-disturbing zone and the destruction zone of the sample. The test can provide a reference for evaluation of engineering geology and optimization of sampler’s design, and reduce the costs on over-conservative design and construction in actual work. The results indicate that the soil particles show an upward micro-uplift and an inverted U-shaped bedding. The degree of disturbance of different bedding is different, and the degree of disturbance of different parts of the same bedding is different. The apparent deformation of the bedding can be fitted by a rotating paraboloid formula. The distribution law of the feature inflection points of each layer can also be fitted by the paraboloid of rotation paraboloid; the area outside the surface is a strong disturbance zone, and the area inside the surface is a micro-disturbance zone. The volume integral ratio of these two regions can be used as the evaluation of the originality of the sample.

参考文献/References:

[1]WATABE Y, SASSA S. History of land reclamation using dredged soils at Tokyo Haneda Airport[J]. Japanese Geotechnical Society Special Publication, 2016, 51(2): 1784-1789.
[2]吴跃东, 罗如平, 刘坚,等. 基于透明土的取土管贯入扰动变形试验研究[J]. 岩土工程学报, 2016, 38(8): 1507-1512.
[WU Y D, LUO R P, LIU J, et al. Soil disturbance deformation induced by penetration of sampler tube based on transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1507-1512.(in Chinese)]
[3]THE NATIONAL ACADEMY OF SCIENCES OF THE AMERICAN. Subsurface exploration and sampling of soils for civil engineering purposes[M]. Washington, D. C.: The Highway Research Board of American, 1952.
[4]宋盛渊, 王清, 孙铁,等. 不同地基处理条件下吹填土孔隙分布特征[J]. 长安大学学报(自然科学版), 2015, 35(2): 46-51.
[SONG S Y, WANG Q, SUN T, et al. Pore distribution characteristics of dredger fill consolidated by different methods[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(2): 46-51.(in Chinese)]
[5]C R I Clayton, A Siddique, R J Hopper. Effects of sampler design on tube sampling disturbance—numerical and analytical investigations[J]. Geotechnique, 1998, 48(6): 847-867.
[6]BUDHU M, WU C S. Numerical analysis of sampling disturbances in clay soils[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(7): 467-492.
[7]TAN T S, LEE F H, CHONG P T, et al. Effect of sampling disturbance on properties of Singapore clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(11): 898-906.
[8]HORNG V, TANAKA H, OBARA T. Effects of sampling tube geometry on soft clayey sample quality evaluated by nondestructive methods[J]. Soils and Foundations, 2010, 50(1): 93-107.
[9]左文荣, 吴跃东, 李治国,等. 取土器贯入土体引起土体扰动的理论分析[J]. 河海大学学报(自然科学版), 2009, 37(6): 702-706.
[ZUO W R, WU Y D, LI Z G, et al. Theoretical analysis of disturbance of soils caused by penetration of soil samplers[J]. Journal of Hohai University(Natural Sciences), 2009, 37(6): 702-706.(in Chinese)]
[10]LIM G T, PINEDA J A, BOUKPETI N. Experimental assessment of sampling disturbance in calcareous silt[J]. Géotechnique Letters, 2018,3(8): 240-247.
[11]BALIGH M M, AZZOUZ A S, CHIN C T. Disturbances due to “Ideal” tube sampling[J]. Journal of Geotechnical Engineering, 1987, 113(7): 739-757.
[12]赵德明. 月壤在取样管内填充特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[ZHAO D M. Research on the filling characteristic of lunar soil in sampling pipe[D]. Harbin: Harbin Institute of Technology, 2011.(in Chinese)]
[13]刘天喜, 魏承, 马亮,等. 月壤钻采取样方式对样品层理的影响[J]. 农业机械学报, 2014, 45(12): 355-361.
[LIU T X, WEI C, MA L, et al. Influence of coring methods on sample bedding in lunar soil drill-sampling[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 355-361.(in Chinese)]
[14]施爱勇, 徐金明, 李德明. 软土扫描电子显微镜图像的微观参数特征分析[J]. 水文地质工程地质, 2013, 40(3): 69-73.
[SHI A Y, XU J M, LI D M. Microscopic features of scanning electron microscopy images of soft soil[J]. Hydrogeology & Engineering Geology, 2013, 40(3): 69-739.(in Chinese)]
[15]王清, 孙明乾, 孙铁,等. 不同处理方法下吹填土微观结构特征[J]. 同济大学学报(自然科学版), 2013, 41(9): 1286-1292.
[WANG Q, SUN M Q, SUN T, et al. Microstructure features for dredger fill by different solidified technologies[J]. Journal of Tongji University(Natural Science), 2013, 41(9): 1286-1292.(in Chinese)]
[16]杨爱武, 封安坤, 姜帅,等. 固结与荷载耦合作用下吹填土力学性质与微结构参数关联性[J]. 水文地质工程地质, 2019, 46(5): 96-105.
[YANG A W, FENG A K, JIANG S et al. Correlation between mechanical properties and microstructure parameters of soft dredger fill under the coupling action of consolidation and load[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 96-105.(in Chinese)]
[17]宋晶. 分级真空预压法加固高粘性吹填土的模拟试验与三维颗粒流数值分析[D]. 长春: 吉林大学, 2011.
[SONG J. Laboratory simulation test and PFC3D numerical analysis of high clay dredger fill in the consolidation process of step vacuum preloading[D]. Changchun: Jilin University, 2011.(in Chinese)]
[18]石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018.
[SHI C, ZHANG Q, WANG S N. Numerical simulation technology and application with particle flow code (PFC 5.0)[M]. Beijing: China Architecture & Building Press, 2018.(in Chinese)]
[19]SHOGAKI TAKAHARU. Mechanism of sample disturbance caused by tube penetration: Model tests on Toyoura sand[J]. Soils and Foundations, 2017, 57(4): 527-542.
[20]罗如平, 吴跃东, 刘坚,等. 取土器贯入扰动变形规律透明土试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 64-68.
[LUO R P, WU Y D, LIU J, et al. Tests on transparent soil for soil disturbance deformation induced by sampler penetration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(Sup 1): 64-68.(in Chinese)]
[21]刘天喜. 基于离散元法的月壤钻取动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[LIU T X. Research on lunar soil drilling dynamics based on the discrete element method[D]. Harbin: Harbin Institute of Technology, 2015.(in Chinese)]
[22]LEE J M, CHUNG S G, KWEON H J, et al. Effects of fixed-piston sampler fixity on clay sample quality[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2016, 169(6): 554-566.
[23]JIANG X Q, LIU E L, JIANG L, et al. Evolution of meso-structures and mechanical properties of granular materials under triaxial compression state from complex network perspective[J]. Granular Matter, 2018, 20(3): 54.
[24]KHABAZIAN M, MIRGHASEMI A A, BAYESTEH H. Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method[J]. Computers and Geotechnics, 2018, 104: 271-280.
[25]GAO X W, TANG D W, YUE H H, et al. Influence of friction on sampling disturbance of lunar surface in direct push sampling method based on DEM[J]. Advances in Space Research, 2017, 59(12): 3036-3044.

备注/Memo

备注/Memo:
收稿日期: 2019-09-07; 修订日期: 2019-12-12
基金项目: 国家自然科学基金项目资助(41877228;41402239;41572277);广州市科技计划项目资助(201904010136)
第一作者: 李志杰(1996-),男,硕士研究生,主要从事软土微观结构及数值模拟。E-mail: lizhj55@mail2.sysu.edu.cn
通讯作者: 宋晶(1982-),女,副教授,硕士研究生导师,从事软土宏微观结构及力学研究。E-mail: songj5@mail.sysu.edu.cn
更新日期/Last Update: 2020-03-15