[1]张林,张登飞,陈存礼,等.考虑竖向附加应力作用的一维垂直土柱仪研制与应用[J].水文地质工程地质,2020,47(2):112-119.[doi:10.16030/j.cnki.issn.1000-3665.201909054]
 ZHANG Lin,ZHANG Dengfei,CHEN Cunli,et al.Research and application of stress-controllable soil column instrument[J].Hydrogeology & Engineering Geology,2020,47(2):112-119.[doi:10.16030/j.cnki.issn.1000-3665.201909054]
点击复制

考虑竖向附加应力作用的一维垂直土柱仪研制与应用()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
112-119
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
Research and application of stress-controllable soil column instrument
文章编号:
1000-3665(2020)02-0112-08
作者:
张林1张登飞2陈存礼1庞腾腾1孙佩娜1
1.西安理工大学岩土工程研究所/陕西省黄土力学与工程重点实验室,陕西 西安710048;2.西北大学地质学系/大陆动力学国家重点实验室,陕西 西安710069
Author(s):
ZHANG Lin1 ZHANG Dengfei2 CHEN Cunli1 PANG Tengteng1 SUN Peina1
1.Shaanxi Provincial Key Laboratory of Loess Mechanics and Engineering/Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi710048, China; 2.Department of Geology, Northwest University/State Key Laboratory of Continmental Dynamics, Xi’an, Shaanxi710069, China
关键词:
竖向附加压力降雨土柱非饱和渗透
Keywords:
vertical-additional-pressure rainfall soil column unsaturated permeability
分类号:
P642.11+4;TU411.4
DOI:
10.16030/j.cnki.issn.1000-3665.201909054
文献标志码:
A
摘要:
渗透系数是研究实际工程渗水问题的关键参数之一。以往对于非饱和土渗透系数的试验研究中,增湿工况较为单一,极少考虑竖向附加应力的影响。基于此,开发了一套一维垂直土柱试验装置以弥补这一缺陷。该装置主要由试验台架、土柱筒、竖向加载装置、供水装置、水分传感器、张力传感器以及数据采集系统等组成,可模拟竖向附加应力作用下降雨、积水入渗、毛细上升工况,可测定增湿过程中水的入渗量与浸润峰时程线、土柱竖向变形以及不同截面的体积含水率与基质吸力的时程曲线,基于瞬态剖面法可获得不同截面处增湿时土的非饱和渗透系数与吸力关系。最后,以兰州Q3非饱和粉质黄土为例,初步开展了不同竖向附加应力作用下土柱积水入渗试验,分析入渗量、湿润锋、体积含水率、吸力及竖向变形时程线变化规律,获取渗透系数与吸力关系的渗透函数变化规律,通过对比类似试验结果,表明试验结果符合渗水规律,验证了研制土柱仪的有效性,但其可靠性还需进一步研究。本试验装置为不同工况下非饱和土体变形、水分迁移规律及渗透特性研究奠定基础,并获得相应试验参数。
Abstract:
The permeability coefficient is one of the key parameters for studying the actual engineering water seepage problem. In the past, in the experimental study on the permeability coefficient of unsaturated soil, the humidification condition was relatively simple, and the influence of vertical additional stress was rarely considered. Based on this, a one-dimensional vertical soil column test device was developed to compensate for this defect. The device is mainly composed of test bench, soil column cylinder, vertical loading device, water supply device, moisture sensor, tension sensor and data acquisition system, which can simulate the test conditions of rainfall, water infiltration and capillary rise under vertical-additional-pressure, and measure the infiltration quantity and wetting front time-history curve, the vertical deformation of soil column, the volumetric moisture content of different sections and the time-history curve of matric suction. Based on transient profile method, when the humidifying the relation between unsaturated permeability coefficient and suction at different sections can be obtained. Finally, taking Lanzhou Q3 unsaturated silty loess as an example, preliminary experiments on soil water infiltration under different vertical additional stresses were carried out to analyze the infiltration, wetting front, volumetric water content, suction and vertical deformation time history. The variation law of the line, the change law of the permeability function of the relationship between the permeability coefficient and the suction force is obtained. By comparing the similar test results, the test results are consistent with the water seepage law, and the effectiveness of the soil column instrument is verified. However, the reliability needs further study. The test device lays a foundation for studying the characteristics of deformation, water migration and permeability of unsaturated soil under different working conditions, and obtains corresponding test parameters.

参考文献/References:

[1]张茂省, 胡炜, 孙萍萍,等. 黄土水敏性及水致黄土滑坡研究现状与展望[J]. 地球环境学报, 2016, 7(4): 323-334.
[ZHANG M S, HU W, SUN P P, et al. Advances and prospects of water sensitivity of loess and the induced loess landslides[J]. Journal of Earth Environment, 2016, 7(4): 323-334.(in Chinese)]
[2]彭建兵, 林鸿州, 王启耀,等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691.
[PENG J B, LIN H Z, WANG Q Y, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684-691.(in Chinese)]
[3]覃小华, 刘东升, 宋强辉,等. 降雨条件下一维土柱垂直入渗模型试验研究及其渗透系数求解[J]. 岩石力学与工程学报, 2017, 36(2): 475-484.
[QIN X H, LIU D S, SONG Q H, et al. Experimental study on one-dimensional vertical infiltration in soil column under rainfall and the derivation of permeability coefficient[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(2): 475-484.(in Chinese)]
[4]王念秦, 刘晓玲, 王建斌. 非饱和土直渗仪的研制与应用[J]. 工程地质学报, 2012, 20(5): 796-799.
[WANG N Q, LIU X L, WANG J B. Development and application of vertical permeameter on unsaturated soil[J]. Journal of Engineering Geology, 2012, 20(5): 796-799.(in Chinese)]
[5]张登飞, 陈存礼, 张洁,等. 等向应力条件下非饱和原状黄土增湿渗水特性试验研究[J]. 岩土工程学报, 2018, 40(3): 431-440.
[ZHANG D F, CHEN C L, ZHANG J, et al. Experimental study on wetting water permeability of unsaturated intact loess under isotropic stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 431-440.(in Chinese)]
[6]周祥. 不同泥质含量砂岩三轴渗透试验研究[J]. 水文地质工程地质, 2017, 44(1): 84-90.
[ZHOU X. An experimental study on permeability of sandstone with different shale contents under 3-D stress conditions[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 84-90.(in Chinese)]
[7]詹良通, 邱清文, 杨益彪,等. 黄土覆盖层水-气耦合运移土柱试验及数值模拟[J]. 岩土工程学报, 2017, 39(6): 969-977.
[ZHAN L T, QIU Q W, YANG Y B, et al. Soil column tests and numerical simulations of moisture-gas coupled flow in a loess cover[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 969-977.(in Chinese)]
[8]姚志华, 陈正汉, 黄雪峰,等. 非饱和原状和重塑Q3黄土渗水特性研究[J]. 岩土工程学报, 2012, 34(6): 1020-1027.
[YAO Z H, CHEN Z H, HUANG X F, et al. Hydraulic conductivity of unsaturated undisturbed and remolded Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1020-1027.(in Chinese)]
[9]王春颖, 毛晓敏, 赵兵. 层状夹砂土柱室内积水入渗试验及模拟[J]. 农业工程学报, 2010, 26(11): 61-67.
[WANG C Y, MAO X M, ZHAO B. Experiments and simulation on infiltration into layered soil column with sand interlayer under ponding condition[J]. Transactions of the CSAE, 2010, 26(11): 61-67.(in Chinese)]
[10]Charles Wang Wai Ng, Anthony Kwan Leung. Measurements of Drying and Wetting Permeability Functions Using a New Stress-Controllable Soil Column[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 58-68. DOI:10.1061/(ASCE)GT.1943-5606.0000560.
[11]王炳忠, 王起才, 张戎令,等. 荷载条件下原状与重塑泥岩渗透性试验研究[J]. 水文地质工程地质, 2019, 46(1): 123-128.
[WANG B Z, WANG Q C, ZHANG R L, et al. An experimental study of the permeability of undisturbed and remolded mudstones under the loading condition[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 123-128.(in Chinese)]
[12]何俊, 阮晓晨, 胡晓瑾,等. 温度和模拟渗滤液作用下黏土的渗透性能研究[J]. 水文地质工程地质, 2017, 44(1): 116-122.
[HE J, RUAN X C, HU X J, et al. Effects of temperature and analog leachate on hydraulic conductivity of compacted clay[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 116-122.(in Chinese)]
[13]苗强强, 陈正汉, 田卿燕,等. 非饱和含黏土砂毛细上升试验研究[J]. 岩土力学, 2011, 32(增刊1): 327-333.
[MIAO Q Q, CHEN Z H, TIAN Q Y, et al. Experimental study of capillary rise of unsaturated clayey sand[J]. Rock and Soil Mechanics, 2011, 32(Sup 1): 327-333.(in Chinese)]
[14]李萍, 李同录, 侯晓坤,等. 黄土中毛细上升速率的现场测试[J]. 河海大学学报(自然科学版), 2014, 42(6): 503-507.
[LI P, LI T L, HOU X K, et al. Field experiment on rate of capillary rise in loess[J]. Journal of Hohai University (Natural Sciences), 2014, 42(6): 503-507.(in Chinese)]
[15]杜红普, 刘波, 王华军,等. 基于土水特征曲线预测多孔介质毛细上升过程[J]. 工程地质学报, 2013, 21(3): 345-350.
[DU H P, LIU B, WANG H J, et al. Prediction of capillary rise in porous media based on soil water characteristic curve[J]. Journal of Engineering Geology, 2013, 21(3): 345-350.(in Chinese)]
[16]陈中奎. 高量程张力计的研制及其应用[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[CHEN Z K. Development of a high-capacity tensiometer and its application[D]. Harbin: Harbin Institute of Technology, 2011.(in Chinese)]

相似文献/References:

[1]易庆林,曾怀恩,黄海峰.利用BP神经网络进行水库滑坡变形预测[J].水文地质工程地质,2013,40(1):124.
 YI Qing-lin,ZENG Huai-en,HUANG Hai-feng.Reservoir landslide deformation forecast using BP neural network[J].Hydrogeology & Engineering Geology,2013,40(2):124.
[2]杨秀元,孙 强,晏鄂川,等.基于实测的望霞W1危岩体失稳动态过程分析[J].水文地质工程地质,2014,41(1):96.
 [J].Hydrogeology & Engineering Geology,2014,41(2):96.
[3]唐扬,殷坤龙,唐子珺.基于HYDRUS的三舟溪滑坡降雨入渗规律研究[J].水文地质工程地质,2017,44(1):152.
 TANG Yang,YIN Kunlong,TANG Zijun.Research on the regulation of rain infiltration in the Sanzhouxi landslide based on HYDRUS[J].Hydrogeology & Engineering Geology,2017,44(2):152.
[4]祁昊,冯文凯,陈建峰,等.降雨作用下欢喜坡冰水堆积体角砾土强度特性[J].水文地质工程地质,2017,44(4):78.
 QI Hao,FENG Wenkai,CHEN Jianfeng,et al.Strength characteristics of the breccia soil in the Huanxipo outwash deposit under rainfall[J].Hydrogeology & Engineering Geology,2017,44(2):78.

备注/Memo

备注/Memo:
收稿日期: 2019-09-23; 修订日期: 2019-11-13
基金项目: 国家重点研发计划项目资助(2018YFC1504703);中国博士后科学基金项目资助(2018M633559);延安大学校级科研项目资助(YDQ2019-33)
第一作者: 张林(1995-),男,硕士研究生,主要从事岩土工程研究。E-mail: 2170720023@stu.xaut.edu.cn
更新日期/Last Update: 2020-03-15