[1]张科,侯杰.岩质边坡复合型破坏机制的改进运动单元法研究[J].水文地质工程地质,2020,47(2):95-101.[doi:10.16030/j.cnki.issn.1000-3665.201909017]
 ZHANG Ke,HOU Jie.Investigation on combined failure mechanism of rock slope based on the improved kinematical element method[J].Hydrogeology & Engineering Geology,2020,47(2):95-101.[doi:10.16030/j.cnki.issn.1000-3665.201909017]
点击复制

岩质边坡复合型破坏机制的改进运动单元法研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
95-101
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
Investigation on combined failure mechanism of rock slope based on the improved kinematical element method
文章编号:
1000-3665(2020)02-0095-07
作者:
张科12侯杰2
1.昆明理工大学电力工程学院,云南 昆明650500;2.昆明理工大学建筑工程学院,云南 昆明650500
Author(s):
ZHANG Ke12 HOU Jie2
1.Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming,Yunnan650500,China;2.Faculty of Civil and Architectural Engineering,Kunming University of Science and Technology,Kunming,Yunnan650500,China
关键词:
岩质边坡运动单元法结构面岩桥安全系数
Keywords:
rock slope kinematical element method discontinuity rock bridge factor of safety
分类号:
TU457
DOI:
10.16030/j.cnki.issn.1000-3665.201909017
文献标志码:
A
摘要:
目前运动单元法的研究主要集中于土质边坡,未涉及到岩质边坡稳定性分析问题;而岩体中孕育有不同特性的结构面,控制着岩质边坡的力学行为。为求解结构面控制作用下岩质边坡“结构面滑移-岩桥剪断”复合型破坏问题,研究了塑性滑移区节点在岩桥内和结构面上的运动约束条件,推导了含结构面的运动单元计算公式,提出了改进运动单元法。通过经典算例的对比分析,验证了改进运动单元法计算结果的准确性。研究结果表明:岩桥位置、结构面贯通度和结构面倾角是控制岩质边坡力学行为的3个主要影响因素。岩桥越接近坡顶,改进运动单元法所得安全系数越大,而Jennings法无法反映岩桥位置的影响效应。高贯通度的结构面导致岩质边坡发生“结构面滑移-岩桥剪断”复合型破坏模式,安全系数较小;而低贯通度的结构面导致完整岩石发生破坏,安全系数较大。水平或陡倾角结构面导致滑裂面穿切结构面,安全系数较大;而对于其它倾角情况下的结构面,岩质边坡发生“结构面滑移-岩桥剪断”复合型破坏模式,安全系数较小。实例应用结果说明该方法可以有效评价岩质边坡的稳定状态,可在类似工程中应用推广。
Abstract:
Previous studies on the kinematical element method have mainly focused on analyzing the stability of soil slopes,whereas little attention has been paid to the rock slope stability problem. Rock mass usually contains various discontinuities of different characteristics that play a dominant role in the mechanics behavior of rock slope. However, conventional methods are not applicable to analyze the combination failure on the rock bridge and the discontinuities. To solve the problem of rock slope stability controlled by discontinuities,vertex kinematic constraint conditions of the plastic sliding zone in the rock bridge and on the discontinuity were investigated. Kinematical element formulations were derived to calculate the factor of safety of the rock slope containing discontinuities. The improved kinematical element method was presented. Classic examples were given for demonstrating the validity of the results obtained by the improved kinematical element method. The results show that the location of rock bridge,the discontinuity persistence and the discontinuity inclination are found to have the dominant effects on the mechanics behavior of the rock slope. The factor of safety with the rock bridge near the slope toe is larger,whereas the Jennings method provides no information on the influence of the location of rock bridge. A high discontinuity persistence causes a rock slope to fail in the combined failure mode with a lower factor of safety,whereas a low discontinuity persistence leads to the failure of intact rock with a higher factor of safety. A horizontal or sub-vertical/vertical discontinuity leads a slope to fail in a mode of cutting through the discontinuity with a higher factor of safety,whereas other discontinuity inclinations cause the combined failure with a lower factor of safety. The proposed method can effectively evaluate the stability state of rock slope, and can be applied in similar practical engineering.

参考文献/References:

[1]李元松, 高晖, 陈峰,等. 乌尉高速公路边坡稳定性综合评价[J]. 水文地质工程地质, 2018, 45(4): 150-156.
[LI Y S, GAO H, CHEN F, et al. Comprehensive assessment of slope stability in Wu—Yu highway[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 150-156.(in Chinese)]
[2]穆成林, 裴向军, 裴钻,等. 基于岩体结构特征和未确知测度评价模型的岩质开挖边坡稳定性研究[J]. 水文地质工程地质, 2019, 46(4): 150-158.
[MU C L, PEI X J, PEI Z, et al. A study of the stability of rock excavated slope based on rockmass structure and unascertained measure evaluation models[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 150-158.(in Chinese)]
[3]郑颖人, 赵尚毅, 时卫民,等. 边坡稳定分析的一些进展[J]. 地下空间, 2001,21(4): 262-271.
[ZHENG Y R, ZHAO S Y, SHI W M, et al. Progress in analysis of slope stability[J]. Underground Space, 2001,21(4): 262-271.(in Chinese)]
[4]S K SARMA. Stability analysis of embankments and slopes[J]. Geotechnique, 1973, 23(3): 423-433.DOI:10.1680/geot.1973.23.3.423.
[5]周志军, 牛涌, 张铁柱. 基于改进Sarma法的岩质边坡稳定性分析[J]. 交通运输工程学报, 2013, 13(1): 15-19.
[ZHOU Z J, NIU Y, ZHANG T Z. Stability analysis of rock slope based on improved Sarma method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 15-19.(in Chinese)]
[6]郑颖人, 赵尚毅, 邓卫东. 岩质边坡破坏机制有限元数值模拟分析[J]. 岩石力学与工程学报, 2003, 22(12): 1943-1952.
[ZHENG Y R, ZHAO S Y, DENG W D. Numerical simulation on failure mechanism of rock slope by strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(12): 1943-1952.(in Chinese)]
[7]张莉丽, 于青春. 一般块体方法理论解验证[J]. 水文地质工程地质, 2010, 37(6): 55-60.
[ZHANG L L, YU Q C. Theoretical validation on general block method[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 55-60.(in Chinese)]
[8]王家臣, 陈冲. 露天矿节理岩质边坡稳定性分析[J]. 煤炭学报, 2017, 42(7): 1643-1649.
[WANG J C, CHEN C. Stability analysis for jointed rock slope in an open iron ore mine[J]. Journal of China Coal Society, 2017, 42(7): 1643-1649.(in Chinese)]
[9]刘欣欣, 唐春安, 龚斌,等. 基于DDD离心加载法的黑山铁矿西帮边坡稳定性研究[J]. 工程力学, 2018, 35(1): 191-200.
[LIU X X, TANG C A, GONG B, et al. Research on the stability of the west slope of the Heishan iron mine based on the ddd centrifugal loading method[J]. Engineering Mechanics, 2018, 35(1): 191-200.(in Chinese)]
[10]GUSSMANN P. Effective KEM solutions for the limit load and the slope stability problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(14): 1061-1077.
[11]李峰, 王晓睿, 罗晓辉,等. 基坑坑底稳定性的机会约束评估方法[J]. 岩土力学, 2010, 31(12): 3867-3874, 3879.
[LI F, WANG X R, LUO X H, et al. Assessment methods of chance constrained on bottom stability of foundation pit[J]. Rock and Soil Mechanics, 2010, 31(12): 3867-3874, 3879.(in Chinese)]
[12]ZHANG K, CAO P. Slope seismic stability analysis on kinematical element method and its application[J]. Soil Dynamics and Earthquake Engineering, 2013, 50: 62-71.
[13]ZHANG K, CAO P, BAO R. Rigorous back analysis of shear strength parameters of landslide slip[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1459-1464.
[14]EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69-87.
[15]杨明成, 郑颖人. 关于Sarma法中条间剪力方向的研讨[J]. 地下空间, 2002,22(2): 142-144.
[YANG M C, ZHENG Y R. Discussion about the direction of interslice shear force in sarma’s method[J]. Underground Space, 2002,22(2): 142-144.(in Chinese)]
[16]GORICKI A,GOODMAN R E.Failure modes of rock slopes demonstrated with base friction and simple numerical models[J].Felsbau,2003,21(2):25-30.
[17]ZHANG H Q, ZHAO Z Y, TANG C A, et al. Numerical study of shear behavior of intermittent rock joints with different geometrical parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 802-816.
[18]周喻, 张怀静, 吴顺川,等. 节理连通率对岩体力学特性影响的细观研究[J]. 岩土力学, 2015, 36(增刊2): 29-36.
[ZHOU Y, ZHANG H J, WU S C, et al. Meso-research on mechanical properties of rock mass affected by joint connectivity rate[J]. Rock and Soil Mechanics, 2015, 36(Sup 2): 29-36.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019-09-05; 修订日期: 2019-10-15
基金项目: 国家自然科学基金项目资助(11902128;41762021);云南省应用基础研究计划项目资助(2018FB093)
第一作者: 张科(1986-),男,副教授,从事岩石力学与工程研究工作。E-mail: zhangke_csu@163.com
通讯作者: 侯杰(1983-),男,实验师,从事工程力学研究工作。E-mail: 99194783@qq.com
更新日期/Last Update: 2020-03-15