[1]康海伟,李萍,侯晓坤,等.原状黄土土水特征滞后性研究[J].水文地质工程地质,2020,47(2):76-83.[doi:10.16030/j.cnki.issn.1000-3665.201907016]
 KANG Haiwei,LI Ping,HOU Xiaokun,et al.A study of hysteresis of soil and water characteristics of intact loess[J].Hydrogeology & Engineering Geology,2020,47(2):76-83.[doi:10.16030/j.cnki.issn.1000-3665.201907016]
点击复制

原状黄土土水特征滞后性研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
76-83
栏目:
工程地质
出版日期:
2020-03-15

文章信息/Info

Title:
A study of hysteresis of soil and water characteristics of intact loess
文章编号:
1000-3665(2020)02-0076-08
作者:
康海伟12李萍12侯晓坤3李同录12夏增选12张辉12
1.长安大学地质工程与测绘学院,陕西 西安710054;2.黄土高原水循环与地质环境教育部野外科学观测研究站, 甘肃 正宁745399;3.中国科学院地质与地球物理研究所,北京100029
Author(s):
KANG Haiwei12 LI Ping12 HOU Xiaokun3 LI Tonglu12 XIA Zengxuan12 ZHANG Hui12
1.School of Geological Engineering and Surveying, Chang’an University, Xi’an,Shaanxi710054,China;2.Water Cycle and Geological Environment Observation and Research Station for the Chinese Loess Plateau, Ministry of Education, Zhengning, Gansu745399, China; 3.Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing100029,China
关键词:
土水特征曲线滞后性原状黄土天然含水率孔隙分布
Keywords:
soil and water characteristic curve hysteresis intact loess natural water content pore distribution
分类号:
P642.11+5;TU411.91
DOI:
10.16030/j.cnki.issn.1000-3665.201907016
文献标志码:
A
摘要:
现有的土水特征曲线(SWCC)滞后性的研究多针对重塑土,原状黄土土水特征曲线滞后性特征的研究较少。为研究全吸力范围内原状黄土的滞后特征,以泾阳马兰黄土(L1)和离石黄土(L5)为研究对象,采用压力板仪和滤纸法测定增湿和减湿SWCC,采用压汞法测定孔隙分布特征,X衍射分析矿物成分。结果表明,在压力板仪测试基质吸力范围内(0~600 kPa),滤纸法和压力板仪测定的SWCC具有一致性,且在减湿过程中两种方法的测试结果更为一致。滤纸法测得的全吸力范围(0~30 000 kPa)内,黄土SWCC滞后性存在三段性特征。即在天然含水率(L1 14.2%、L5 17.3%)附近,黄土SWCC几乎无滞后性;含水率高于天然含水率一定范围(L1大于19.2%、L5大于18.3%),存在极为明显的滞后性;低于天然含水率一定范围(L1小于11.2%、L5小于15.4%),存在弱滞后性。天然状态下反复干湿循环,导致黄土SWCC在天然含水率附近无滞后性;黄土限制孔隙对墨水瓶效应的增益作用,导致高含水率下黄土SWCC呈强滞后性;黏土矿物的水合作用,导致低含水率下SWCC呈弱滞后性。
Abstract:
There are few studies on hysteresis of soil and water characteristic curve(SWCC) of intact loess, and most of the existing studies focus on remolding soil samples. In order to study the hysteresis characteristics of intact loess in the full suction range, Malan loess (L1) and Lishi loess (L5) in Jingyang were taken as the research objects, their wetting and drying SWCCs were determined by filter paper method and pressure plate instrument. And their pore distribution and mineral composition were measured by mercury intrusion method and X-ray diffraction, respectively. The results show that the SWCCs measured by filter paper method and pressure plate instrument are consistent in the range of pressure plate instrument (0~600 kPa), and the results of two methods are more consistent in the process of drying. Within the total suction range (0~30 000 kPa) measured by filter paper method, the hysteresis of SWCC is characterized by three stages. That is, in the vicinity of natural water content (L1 14.2%, L5 17.3%), SWCC of the two layers of loess has almost no hysteresis; the water content is higher than a certain range of natural water content (L1 is greater than 19.2% and L5 is greater than 18.3%), and there is extremely obvious hysteresis; lower than a certain range of natural water content (L1 is less than 11.2% and L5 is less than 15.4%), there is a weak hysteresis. Repeated drying and wetting cycles under natural conditions result in no hysteresis of SWCC near the natural water content; the potentiation of limited pores on the ink-bottle effect leads to strong hysteresis at high water content; the hydration of clay minerals results in a weak hysteresis at low water content.

参考文献/References:

[1]党进谦, 李靖. 非饱和黄土含水量与基质吸力的关系[J]. 水土保持通报, 1995, 15(4): 39-42.
[DANG J Q, LI J. Study on correlation between water content and matrix suction of unsaturated loess[J]. Bulletin of Soil and Water Conservation, 1995, 15(4): 39-42.(in Chinese)]
[2]FREDLUND D G. Unsaturated soil mechanics in engineering practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 286-321.
[3]徐全, 谭晓慧, 辛志宇,等. 土水特征曲线的概率分析[J]. 水文地质工程地质, 2015, 42(3): 79-85.
[XU Q, TAN X H, XIN Z Y, et al. Probabilistic analysis of the soil-water characteristic curve[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 79-85.(in Chinese)]
[4]VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
[5]周葆春, 孔令伟, 陈伟,等. 荆门膨胀土土-水特征曲线特征参数分析与非饱和抗剪强度预测[J]. 岩石力学与工程学报, 2010, 29(5): 1052-1059.
[ZHOU B C, KONG L W, CHEN W, et al. Analysis of characteristic parameters of soil-water characteristic curve(swcc) and unsaturated shear strength prediction of Jingmen expansive soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1052-1059.(in Chinese)]
[6]谌文武, 刘伟, 王娟,等. 基于不同渗透持时的非饱和黄土渗透系数预测分析[J]. 岩土工程学报, 2018, 40(增刊1): 22-27.
[CHEN W W, LIU W, WANG J, et al. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 1): 22-27.(in Chinese)]
[7]VANAPALLI S K, FREDLUND D G, PUFAHL D E. Influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 2001, 51(6): 573-576.
[8]唐东旗, 彭建兵, 孙伟青. 非饱和黄土基质吸力的滤纸法测试[J]. 煤田地质与勘探, 2012, 40(5): 37-41.
[TANG D Q, PENG J B, SUN W Q. Matrix suction test based on the filter paper method for unsaturated loess[J]. Coal Geology & Exploration, 2012, 40(5): 37-41.(in Chinese)]
[9]谷琪, 王家鼎, 仝云莉,等. 滤纸法测非饱和黄土土水特征曲线试验及拟合研究[J]. 土壤通报, 2016, 47(3): 588-593.
[GU Q, WANG J D, TONG Y L, et al. Soil water characteristic curve test and simulation of unsaturated loess based on filter paper method[J]. Chinese Journal of Soil Science, 2016, 47(3): 588-593.(in Chinese)]
[10]孙德安,刘文捷,吕海波.桂林红黏土的土-水特征曲线[J].岩土力学,2014,35(12):3345-3351.
[SUN D A,LIU W J, LYU H B. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12):3345-3351.(in Chinese)]
[11]WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7). DOI:10.1029/2005wr004594.
[12]刘奉银, 张昭, 周冬,等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增刊2): 132-1362.
[LIU F Y, ZHANG Z, ZHOU D, et al. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(Sup 2): 132-136.(in Chinese)]
[13]李军,刘奉银,王磊,等. 关于土水特征曲线滞回特性影响因素的研究[J].水利学报,2015,46(增刊 1):194-199.
[LI J,LIU F Y,WANG L,et al. A research of affect factor on hysteresis behavior for soil-water characteristic curve[J]. Journal of Hydraulic Engineering,2015,46(Sup 1):194-199.(in Chinese)]
[14]LU N, KHORSHIDI M. Mechanisms for soil-water retention and hysteresis at high suction range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8): 04015032.
[15]AL-MAHBASHI A M, ELKADY T Y, AL-SHAMRANI M A. Hysteresis soil-water characteristic curves of highly expansive clay[J]. European Journal of Environmental and Civil Engineering, 2018, 22(9): 1041-1059.
[16]黄伟, 刘清秉, 项伟,等. 高吸力段黏土水合机制及微观持水模型研究[J]. 岩土工程学报, 2018, 40(7): 1268-1276.
[HUANG W, LIU Q B, XIANG W, et al. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276.(in Chinese)]
[17]南京水利科学研究院.土工试验方法标准:GB/T50123—1999[S].北京:中国计划出版社,1999.
[Nanjing Hydraulic Research Institute. Standard for soil test method: GB/T50123—1999 [S]. Beijing:China Planning Publishing House, 1999.(in Chinese)]
[18]侯凯. 泾阳修石渡剖面黄土成壤与成分特征及其古环境意义[D]. 西安: 长安大学, 2018.
[HOU K. Pedogenic and composition characteristics of the loess soil and its paleo-environmental significance in the xiushidu profile of Jingyang[D]. Xi’an: Changan University, 2018.(in Chinese)]
[19]中国建筑科学研究院.建筑地基基础设计规范:GB50007—2011[S]. 北京:中国建筑工业出版社,2012.
[China Academy of Building Research. Code for design of building foundation: GB50007—2011[S]. Beijing:China Construction Industry Press,2012.(in Chinese)]
[20]ASTM D5298-10.Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper [S]. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. 2014 A.
[21]杨爱武,封安坤,姜帅,等.固结与荷载耦合作用下吹填土力学性质与微结构参数关联性[J].水文地质工程地质,2019,46(5):96-105.
[YANG A W, FENG A K,JIANG S,et al. Correlation between mechanical properties and microstructure parameters of soft dredger fill under the coupling action of consolidation and load [J]. Hydrogeology & Engineering Geology, 2019, 46(5): 96-105.(in Chinese)]
[22]WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921, 7(4): 115-116.
[23]雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑 化学 生物学 农学 医学 地学), 1987, 17(12): 1309-1318.
[LEI X Y. The pore types and collapsibility of loess in China [J]. Science in China, Ser. B, 1987, 17(12): 1309-1318.(in Chinese)]
[24]BAKER R, FRYDMAN S. Unsaturated soil mechanics[J]. Engineering Geology, 2009, 106(1/2): 26-39.
[25]汪明武, 杨江峰, 李健,等. 合肥新桥国际机场原状非饱和膨胀土的土水特性研究[J]. 工业建筑, 2012, 42(12): 41-45.
[WANG M W, YANG J F, LI J, et al. Soil-water characteristics of undisturbed and unsaturated expansive clays in the Xinqiao international airport area of Hefei[J]. Industrial Construction, 2012, 42(12): 41-45.(in Chinese)]
[26]许旭堂, 简文彬. 非饱和原状残积土土水特征曲线研究[J]. 工程地质学报, 2015, 23(4): 668-674.
[XU X T, JIAN W B. Research on swcc of unsaturated natural residual soil[J]. Journal of Engineering Geology, 2015, 23(4): 668-674.(in Chinese)]
[27]MUOZ-CASTELBLANCO J A, PEREIRA J M, DELAGE P, et al. The water retention properties of a natural unsaturated loess from northern France[J]. Géotechnique, 2012, 62(2): 95-106.
[28]汤连生, 颜波, 李振嵩,等. 花岗岩残积土水土特征曲线的试验研究[J]. 水文地质工程地质, 2008, 35(4): 62-65.
[TANG L S, YAN B, LI Z S, et al. The experimental research on the soil-water characteristic curve of the granite residual soil[J]. Hydrogeology & Engineering Geology, 2008, 35(4): 62-65.(in Chinese)]
[29]陈留凤, 彭华. 干湿循环对硬黏土的土水特性影响规律研究[J]. 岩石力学与工程学报, 2016, 35(11): 2337-2344.
[CHEN L F, PENG H. Experimental study on the water retention properties of the hard clay under cyclic suction conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2337-2344.(in Chinese)]
[30]NG C W W, SADEGHI H, HOSSEN S K B, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269.

相似文献/References:

[1]伊盼盼,牛圣宽,韦昌富.干密度和初始含水率对非饱和重塑粉土土水特征曲线的影响[J].水文地质工程地质,2012,39(1):42.
 YI Pan pan,NIU Sheng kuan,WEI Chang fu.Effect of dry density and initial moisture content on soil water characteristic curve of remolded unsaturated silt[J].Hydrogeology & Engineering Geology,2012,39(2):42.
[2]王俊梅,刘海宁.水库蓄水引发的地下水位抬升和渗控措施研究[J].水文地质工程地质,2011,38(5):115.
 WANG Jun-mei,LIU Hai-ning.Seepage control of unsaturated soil based on the SWCC[J].Hydrogeology & Engineering Geology,2011,38(2):115.
[3]邱欣,钱劲松,张世洲,等.基于基质吸力的粘性路基土动回弹模量预估模型研究[J].水文地质工程地质,2011,38(3):49.
 QIU Xin,QIAN Jin-song,ZHANG Shi-zhou.Research on prediction model of dynamic resilient modulus of subgrade soil based on matric suction[J].Hydrogeology & Engineering Geology,2011,38(2):49.
[4]文宝萍,胡艳青.颗粒级配对非饱和粘性土基质吸力的影响规律[J].水文地质工程地质,2008,35(6):50.
 WEN Bao-ping,HU Yan-qing.Effect of particle size distribution on the metric suction of unsaturated clayey soils[J].Hydrogeology & Engineering Geology,2008,35(2):50.
[5]习羽,李同录,李萍,等.蒸汽凝水滴渗诱发的一个非饱和黄土滑坡机理研究[J].水文地质工程地质,2017,44(4):145.
 XI Yu,LI Tonglu,LI Ping,et al.Mechanism of an unsaturated loess landslide induced by dropping of condensed water vapor[J].Hydrogeology & Engineering Geology,2017,44(2):145.

备注/Memo

备注/Memo:
收稿日期: 2019-07-08; 修订日期: 2019-11-05
基金项目: 国家自然科学基金项目资助(41877242;41772278)
第一作者: 康海伟(1995-),男,硕士研究生,研究方向为非饱和黄土力学。E-mail:271684610@qq.com
通讯作者: 李萍(1971-),女,博士,副教授,主要从事非饱和黄土力学、边坡稳定性及可靠度研究。E-mail:dcdgx07@chd.edu.cn
更新日期/Last Update: 2020-03-15