[1]武亚遵,李彦涛,林云,等.管道流模型参数敏感性分析及其在许家沟泉域的应用[J].水文地质工程地质,2020,47(2):68-75.[doi:10.16030/j.cnki.issn.1000-3665.201904062]
 WU Yazun,LI Yantao,LIN Yun,et al.A sensitivity analysis of conduit flow model parameters and its application to the catch area of the Xujiagou spring[J].Hydrogeology & Engineering Geology,2020,47(2):68-75.[doi:10.16030/j.cnki.issn.1000-3665.201904062]
点击复制

管道流模型参数敏感性分析及其在许家沟泉域的应用()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
47卷
期数:
2020年2期
页码:
68-75
栏目:
水文地质
出版日期:
2020-03-15

文章信息/Info

Title:
A sensitivity analysis of conduit flow model parameters and its application to the catch area of the Xujiagou spring
文章编号:
1000-3665(2020)02-0068-08
作者:
武亚遵12李彦涛1林云12曲鹏冲1
1.河南理工大学资源环境学院,河南 焦作454000;2.中原经济区煤层(页岩)气河南省协同创新中心,河南 焦作454000
Author(s):
WU Yazun12 LI Yantao1 LIN Yun12 QU Pengchong1
1.Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo, Henan454000, China;2.Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo, Henan454000, China
关键词:
岩溶管道MODFLOW-CFP数值模拟泉流量岩溶水许家沟泉域
Keywords:
karst conduit MODFLOW-CFP numerical simulation spring discharge karst groundwater Xujiagou spring area
分类号:
P641.134
DOI:
10.16030/j.cnki.issn.1000-3665.201904062
文献标志码:
A
摘要:
在岩溶含水系统中,作为主要排水通道的管道对泉流量动态具有一定的控制作用,而管道特征参数对流量变化亦有影响。为确定管道各参数的影响,前人以管道发育的岩溶水系统为研究对象,进行了短时间序列泉流量响应的分析探讨,而对岩溶管道不十分发育的岩溶水系统的研究较薄弱。为此,本研究结合北方岩溶水系统的发育特征,借助CFP管道流模型对管道各参数对岩溶系统流量和流态的影响程度及各参数的敏感性进行了分析,而后基于河南鹤壁许家沟泉域岩溶水文地质特征构建了泉域的MODFLOW-CFP模型,对泉域岩溶地下水渗流进行了模拟,并对不同降水保证率下的泉流量进行了预测。结果表明:管道流量与管壁渗透系数、管道坡度和管径呈正相关,而随弯曲度和埋深的增加管道流量呈先增大后减小的趋势。管壁粗糙度对流量的影响较小,且呈现出一定的波动性,尤其是当管壁粗糙度较小时,波动比较明显。经敏感性分析发现,管壁渗透系数和埋深的敏感性最高,其次为弯曲度和管道坡度,而管道直径和管壁粗糙度敏感性最低。许家沟泉域在25%降水保证率下,年最大泉流量为0.45 m3/s,平均泉流量为0.36 m3/s;在75%降水保证率下,年最大泉流量为0.41 m3/s,平均泉流量为0.31 m3/s,与实际情况吻合。该法可为我国北方岩溶区水资源评价及泉域水资源开发保护提供借鉴。
Abstract:
In the karst aquifer systems, the pipelines as the main drainage channels have a certain control effect on the spring flow dynamics, and the pipeline characteristic parameters also have an impact on the flow variation. In order to determine the influence of various parameters of the pipelines, the karst water systems developed by the pipelines were studied by predecessors, and the response of the spring discharge of short-time series was analyzed and discussed. However, the research on the karst water systems which were not very developed by the karst pipeline is relatively weak. For this reason, this study combines the development characteristics of karst water systems in North China, analyses the influence degree and sensitivity of various parameters of pipeline on the flow rate and flow pattern of karst systems by means of the CFP pipeline flow model, and constructs the MODFLOW-CFP model of the spring basin based on the karst hydrogeological characteristics of the Xujiagou spring basin in Hebi of Henan. The seepage of karst groundwater is simulated and the spring discharge under different rainfall guarantee rates is predicted. The results show that the pipe flow rate is positively correlated with the coefficient of permeability of the pipe wall, the slope and diameter of the pipe, while the pipe flow rate increases first and then decreases with the increasing bending and burial depth. The influence of the pipe wall roughness on flow rate is small and shows certain fluctuation, especially when the pipe wall roughness is small, the fluctuation is obvious. Sensitivity analyses show that the sensitivity of the coefficient of permeability and burial depth of pipe wall is the highest, followed by the curvature and slope of pipe, while the sensitivity of diameter and roughness of pipe wall is the lowest. Under the rainfall guarantee rate of 25%, the annual maximum spring discharge is 0.45 m3/s and the average spring discharge is 0.36 m3/s. Under the rainfall guarantee rate of 75%, the annual maximum spring discharge is 0.41 m3/s and the average spring discharge is 0.31 m3/s, which are consistent with those of the actual situation. This method can provide reference for water resources evaluation, development and protection in karst areas of northern China.

参考文献/References:

[1]袁道先. 中国岩溶学[M]. 北京:地质出版社,1994.
[YUAN D X. Karst science in China[M]. Beijing:Geological Publishing House, 1994.(in Chinese)]
[2]韩行瑞. 岩溶水文地质学[M]. 北京:科学出版社,2015.
[HAN X R. Karst hydrogeology[M]. Beijing:Science Press, 2015.(in Chinese)]
[3]袁道先,蒋勇军,沈立成,等. 现代岩溶学[M]. 北京:科学出版社,2016.
[YUAN D X, JIANG Y J, SHEN L C,et al. Modern karstology[M]. Beijing:Science Press, 2016.(in Chinese)]
[4]魏加华,郭亚娇,王荣,等. 复杂岩溶介质地下水模拟研究进展[J]. 水文地质工程地质,2015,42(3):27-34.
[WEI J H, GUO Y J, WANG R, et al. Recent advances in simulation approaches of the complex karst medium[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 27-34.(in Chinese)]
[5]SHOEMAKER W B, KUNIANSKY E L, BIRK S, et al. Documentation of a conduit flow process (CFP) for MODFLOW-2005[M]. Washington:USGS, 2008.
[6]杨杨,唐建生,苏春田,等. 岩溶区多重介质水流模型研究进展[J]. 中国岩溶,2014,33(4):419-424.
[YANG Y, TANG J S, SU C T, et al. Research advances on multi-medium flow model for karst aquifers[J]. Carsologica Sinica, 2014,33(4):419-424.(in Chinese)]
[7]赵良杰,夏日元,杨杨,等. 基于CFP的岩溶管道流数值模拟研究——以桂林寨底地下河子系统为例[J]. 地球学报,2018,39(2):225-232.
[ZHAO L J, XIA R Y, YANG Y, et al. Research on numerical simulation of karst conduit media based on CFP: a case study of Zhaidi karst underground river subsystem of Guilin[J]. Acta Geoscientica Sinica, 2018, 39(2):225-232.(in Chinese)]
[8]HILL M E, STEWART M T, MARTIN A. Evaluation of the MODFLOW—2005 conduit flow process[J]. Groundwater, 2010, 48(4):549-559.
[9]REIMANN T, HILL M E. MODFLOW-CFP: A New Conduit Flow Process for MODFLOW-2005[J]. Groundwater, 2010, 47(3):321-325.
[10]GALLEGOS J J, HU B X, DAVIS H. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP[J]. Hydrogeology Journal, 2013, 21(8): 1749-1760.
[11]秦就国,蒋亚萍. CFP管道流数值模拟方法综述[J]. 地下水,2014,36(3):98-100.
[QIN J G, JIANG Y P. A survey of numerical simulation methods for CFP pipeline flow[J]. Ground Water, 2014,36(3): 98-100.(in Chinese)]
[12]刘丽红,束龙仓,鲁程鹏. 基于管道流模型的岩溶含水系统降雨泉流量响应规律——以贵州后寨典型小流域为例[J]. 吉林大学学报(地球科学版),2010, 40(5): 1083-1089.
[LIU L H, SHU L C, LU C P. Precipitation and discharge response mechanism based on conduit flow model in karstic water system: application the Houzhai karstic water system of Guizhou Province[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5): 1083-1089.(in Chinese)]
[13]刘丽红,吴潇潇,颜冰. 岩块尺度达西流非达西流流态转化研究[J]. 科技通报,2017,33(1): 32-38.
[LIU L H, WU X X, YAN B. Research of transition between the darcian and non—darcian flow of rock block scale[J]. Bulletin of Science and Technology, 2017, 33(1): 32-38.(in Chinese)]
[14]焦友军,潘晓东. 岩溶管道结构影响泉流量变化的数值模拟研究[J]. 中国岩溶, 2017, 36(5): 736-742.
[JIAO Y J, PAN X D. Numerical modeling of the influence of karst-conduit structure on variation of spring flow[J]. Carsologica Sinica, 2017, 36(5): 736-742.(in Chinese)]
[15]杨郑秋. 基于MODFLOW-CFP湖南省香花岭地区岩溶水数值与溶质运移模拟[D]. 北京:中国地质大学(北京),2018.
[YANG Z Q. The groundwater numerical simulation and solute transport model based on MODFLOW-CFP in Hunan province Xianghualing Area[D]. Beijing:China University Of Geosciences (Beijing), 2018.(in Chinese)]
[16]杨杨,赵良杰,苏春田,等. 基于CFP的岩溶管道流溶质运移数值模拟研究[J].水文地质工程地质,2019,46(4): 51-57.
[YANG Y, ZHAO L J, SU C T, et al. A study of the solute transport model for karst conduits based on CFP[J]. Hydrogeology & Engineering Geology, 2019,46(4):51-57.(in Chinese)]
[17]REIMANN T, REHRL C, SHOEMAKER W B, et al. The significance of turbulent flow representation in single-continuum models[J]. Water Resources Research, 2011, 47(9): 2415-2422.
[18]BAHRAMI M, YOVANOVICH M M, CULHAM J R. Pressure drop of fully-developed, laminar flow in rough micro tubes[C]//Proceedings of ASME Conference on ASME 3rd International Conference on Microchannels and Minichannels. 2008: 259-268.
[19]柴宏伟,吴晶晶,陈明,等. 鹤壁市岩溶地下水可开采资源量分析与评价[J]. 现代矿业,2013,29(7): 83-85.
[CHAI H W, WU J J, CHEN M, et al. Analysis and evaluation of exploitable resources of karst groundwater in Hebi City[J]. Modern Mining, 2013, 29(7): 83-85.(in Chinese)]
[20]徐郅杰. 鹤壁市岩溶水后备水源地水资源量评价[J]. 科技视界,2015(4):164-164.
[XU Z J. Water resources evaluation of karst water reserve water source in Hebi City[J]. Science & Technology Vision, 2015(4): 164-164.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019-04-22; 修订日期: 2019-08-14
基金项目: 国家自然科学基金资助项目(41602265);河南理工大学博士基金资助项目(B2012-080)
第一作者: 武亚遵(1981-),男,博士,副教授,主要从事水文地质工程地质研究。E-mail:wuyazun@163.com
通讯作者: 林云(1983-),女,博士,讲师,主要从事水文地质及水文过程方面的研究。E-mail:ylzz5211@sina.com
更新日期/Last Update: 2020-03-15