ZONG Chengyuan,KANG Xueyuan,SHI Xiaoqing,et al.Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J].Hydrogeology & Engineering Geology,2020,47(2):1-8.[doi:10.16030/j.cnki.issn.1000-3665.201906018]





Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method
南京大学地球科学与工程学院/表生地球化学教育部重点实验室,江苏 南京210023
ZONG Chengyuan KANG Xueyuan SHI Xiaoqing WU Jichun
Key Laboratory of Surficial Geochemistry, Ministry of Education/School of Earth Science and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
parameter estimation multiple-point geostatistics pilot points non-Gaussian fields ensemble smoother with multiple data assimilation method
在冲积含水层中,由于岩相的非均质分布,渗透系数一般呈现出明显的非高斯特性(例如砂和黏土两种岩相),非高斯特性给地下水模型参数的推估带来了困难与挑战。目前广泛使用的集合平滑数据同化方法(ESMDA)虽然有效且计算成本较低,但仅适用于高斯场。多点地质统计方法虽已广泛用于模拟非高斯场,但其无法融入动态观测数据推估参数。基于多点地质统计方法中的直接采样法(DS)与集合平滑数据同化方法,构建一种新的数据同化框架(ESMDA-DS),既可保持参数场的非高斯特性,又可融合多源数据精确推估非高斯场。构建三个理想算例验证ESMDA-DS对非高斯参数场的推估效果,并探讨了不同类型观测数据对推估效果、水位与浓度预测精度的影响。三个理想算例包括仅融合水位数据(Case 1),同时融合水位与浓度数据(Case 2),同时融合水位、浓度与对数渗透系数数据(Case 3)。结果表明:ESMDA-DS方法结合了ESMDA与DS的各自优势,能有效融合观测数据推估渗透系数场,并保持参数场的非高斯特性。通过对比三个算例推估结果,Case 3的参数场推估效果最好,水位与浓度预测精度最高,Case 2次之,Case 1最差,表明融合多源数据可改善推估效果,提高预测精度。
In alluvial aquifers, hydraulic conductivity usually follows non-Gaussian distribution due to litho-facies heterogeneity. It is still a great challenge to characterize the non-Gaussian aquifers. The ensemble smoother with multiple data assimilation (ESMDA) is an effective and low-cost inversion method, but only works for the Gaussian fields. The multiple-point geostatistics methods (MPS) are widely used to estimate the non-Gaussian fields, but cannot integrate dynamic data (e.g., piezometric head and concentration) for highly parameterized inversion. In this work, we developed a new data assimilation framework, ESMDA-DS, by coupling the Direct Sampling method (DS, one of Multiple-point geostatistics method) and ESMDA method. The performance of the ESMDA-DS is demonstrated by three synthetic cases. The influence of different observation data types on parameter estimation are also discussed. For Case 1, only piezometric head data are assimilated. For Case 2, both piezometric head and concentration data are assimilated simultaneously. For Case 3, the piezometric head, concentration and hydraulic conductivity observation data are assimilated together. The results show that the ESMDA-DS method can not only preserve the non-Gaussian pattern, but also incorporate the dynamic data to identify the non-Gaussian aquifers with a high resolution. Case 3 has the highest accuracy to estimate the non-Gaussian field and predict the evolution of piezometric head and concentration, Case 2, the second, and Case 1 the worst, which demonstrate that integration of multiple data can improve the accuracy of parameter estimation and has a better performance for model prediction.


[1]周海燕. 基于集合卡尔曼滤波法的非高斯含水层参数识别[D]. 北京:中国地质大学(北京), 2012.
[ZHOU H Y. Characterizing non-Gaussian aquifer model parameters based on the Ensemble Kalman Filter[D]. Beijing: China University of Geosciences(Beijing), 2012.(in Chinese)]
[2]BACHMAF S, MERKEL B J. Estimating water chemistry parameters from experimental data using PEST with PHREEQC[J]. FOG-Freiberg Online Geoscience, 2011, 28:1-18.
[3]DOHERTY J. PEST, model independent parameter estimation, user manual[M]. Brisbane: WatermarkNumerical Computing, 2004.
[4]LUCA CARNIATO, G SCHOUPS, NICK VAN DE GIESEN. Inference of reactive transport model parameters using a Bayesian multivariate approach[J]. Water Resources Research, 2014, 50(8):6406-6427.
[5]陈晓恋, 张美雁, 文章, 等. 裂隙含水层水文地质参数反演——以黑龙江七台河市应急水源地为例[J]. 水文地质工程地质,2014, 41(5): 32-37.
[CHEN X L, ZHANG M Y, WEN Z, et al. Application of numerical simulation to estimate the hydraulic parameters in fractured media:A case study in emergency water area of Qitaihe City,Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2014, 41(5): 32-37.(in Chinese)]
[6]李贵仁, 赵珍, 陈植华. 数值模拟在反演矿区水文地质条件中的应用[J]. 水文地质工程地质,2013, 40(2): 19-23.
[LI G R, ZHAO Z, CHEN Z H. Application of numerical simulation to inverting hydrogeological conditions in mining areas[J]. Hydrogeology & Engineering Geology,2013, 40(2): 19-23.(in Chinese)]
[7]KALMAN R E. A new approach to linear filtering and prediction Problems[J]. Journal of Basic Engineering,1960,82(1):35-45.
[8]VAN LEEUWEN P J, EVENSEN G. Data assimilation and inverse methods in terms of a probabilistic formulation[J]. Monthly Weather Review, 1996, 124(12):2898.
[9]EVENSEN G. The ensemble Kalman filter for combined state and parameter estimation[J]. IEEE Control Systems, 2009, 29(3):83-104.
[10]CHEN Y, OLIVER D S. Ensemble randomized maximum likelihood method as an Iterative ensemble smoother[J]. Mathematical Geosciences, 2012, 44(1):1-26.
[11]AA EMERICK. Analysis of the performance of ensemble-based assimilation of production and seismic data[J]. Journal of Petroleum Science and Engineering, 2016,139:219-239.
[12]EMERICK ALEXANDRE A, REYNOLDS A C. Ensemble smoother with multiple data assimilation[J]. Computers & Geosciences, 2013, 55(3):3-15.
[13]EMERICK A A, REYNOLDS A C. History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations[J]. Computational Geosciences, 2012, 16(3):639-659.
[14]EMERICK A A, REYNOLDS A C. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model[J]. Computational Geosciences, 2013, 17(2):325-350.
[15]徐腾. 基于逆序贯模拟及相关概率场方法的非高斯渗透系数场反演[D]. 北京: 中国地质大学(北京), 2016.
[XU T. The characterization of non-Gaussian hydraulic conductivity fields using inverse sequential simulation and correlated probability field method[D]. Beijing: China University of Geosciences(Beijing), 2016.(in Chinese)]
[16]ZOVI F, CAMPORESE M, HENDRICKS FRANSSEN H J,et al. Identification of high-permeability subsurface structures with multiple point geostatistics and normal score ensemble Kalman filter[J]. Journal of Hydrology, 2017, 548:208-224.
[17]MARIETHOZ G, RENARD P, STRAUBHAAR J. The direct sampling method to perform multiple-point geostatistical simulations.[J]. Water Resources Research, 2010, 46(11) 1753-1761.
[18]CAO Z D, LI L P, CHEN K. Bridging iterative ensemble smoother and multiple-point geostatistics for better flow and transport modeling[J]. Journal of Hydrology, 2018,565(2018):411-421.
[19]薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007.
[XUE Y Q, XIE C H. Numerical simulation for groundwater[M]. Beijing: Science Press, 2007.(in Chinese)]
[20]MODEL MICHAEL MCDONALD ARLEN-HARBAUGH. A modular three-dimensional finite-difference ground-water flow model[J]. Journal of Hydrology, 1986, 88(3/4):387-389.
[21]ZHENG CHUNMIAO, WANG P-P. MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; Documentation and User’s Guide[J]. Ajr American Journal of Roentgenology, 1999, 169(4):1196-1197.
[22]NAN T C, WU J C. Groundwater parameter estimation using the ensemble Kalman filter with localization[J]. Hydrogeology Journal, 2011, 19(3):547-561.
[23]LEE J, KITANIDIS P-K. Large-scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA)[J]. Water Resources Research, 2014, 50(7):5410-5427.
[24]曹少华, 曾献奎, 蒋建国, 等. 基于局域化集合卡尔曼滤波的含水层弥散度场识别研究[J]. 南京大学学报(自然科学版),2016, 52(3): 429-437.
[CAO S H, ZENG X K, JIANG J G, et al. An approach based on localizaed ensemble Kalman filter to identify groundwater dispersivity field[J]. Journal of Nanjing University(Natural Sciences),2016, 52(3): 429-437.(in Chinese)]
[25]兰天, 康学远, 施小清, 等. 基于EnKF综合水头和浓度观测数据推估地下水流模型参数[J]. 水文地质工程地质,2017, 44(5): 6-13.
[LAN T, KANG X Y, SHI X Q, et al. Joint assimilation of heads and concentrations for estimating parameters of groundwater flow models using the Ensemble Kalman Filter[J]. Hydrogeology & Engineering Geology,2017, 44(5): 6-13.(in Chinese)]
[26]崔凯鹏. 集合卡尔曼滤波在地下水流及溶质运移数据同化中的应用探讨[D]. 南京: 南京大学, 2013.
[CUI K P. The application and discussion of ensemble kalman filter method in groundwater flow and solute transport data assimilation[D]. Nanjing: Nanjing University, 2013.(in Chinese)]
[27]LI L P, ZHOU H Y, GóMEZ-HERNáNDEZ J J, et al. Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter[J]. Journal of Hydrology, 2012, 428/429(1):152-169.
[28]曹少华, 崔凯鹏, 蒋建国, 等. 基于局域化EnKF同时同化地下水水流和溶质运移数据的渗透系数场识别研究[J]. 高校地质学报,2018, 24(5): 769-777.
[CAO S H, CUI K P, JIANG J G, et al. On localized ensemble Kalman filter to calibrate heterogeneous hydraulic conductivity field by assimilating hydraulic head and solute concentration observations[J]. Geological Journal of China Universities,2018, 24(5): 769-777.(in Chinese)]
[29]XU T, GMEZ HERNNDEZ J J. Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures[J]. Water Resources Research, 2016, 52(8):6111-6136.


收稿日期: 2019-06-14; 修订日期: 2019-08-10
基金项目: 国家重点研发计划(2018YFC0406400);国家自然科学基金(41672229)
第一作者: 宗成元(1994-),男,硕士研究生,主要从事水文模型数值模拟。E-mail:zongcy1110@163.com
通讯作者: 施小清(1979-),男,教授,主要从事地下水数值模拟。E-mail: shixq@nju.edu.cn
更新日期/Last Update: 2020-03-15