[1]严克涛,郭清海.地下水环境中的硫代砷研究进展[J].水文地质工程地质,2019,46(06):132-141.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.18]
 YAN Ketao,GUO Qinghai.Advances in thioarsenic in groundwater systems[J].Hydrogeology & Engineering Geology,2019,46(06):132-141.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.18]
点击复制

地下水环境中的硫代砷研究进展()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
132-141
栏目:
环 境 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Advances in thioarsenic in groundwater systems
文章编号:
1000-3665(2019)05-0132-10
作者:
严克涛郭清海
中国地质大学(武汉)生物地质与环境地质国家重点实验室/环境学院,湖北 武汉430074
Author(s):
YAN Ketao GUO Qinghai
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Hubei430074, China
关键词:
硫代砷地下水地热水研究进展
Keywords:
thioarsenic groundwater geothermal water research advance
分类号:
P641.3
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.18
文献标志码:
A
摘要:
硫代砷是富硫化物地下水中砷的重要形态,对环境和人类健康有潜在威胁。目前硫代砷研究程度尚低,本次主要针对国内外地下水(地热水)中硫代砷的存在形态,水文—生物—环境地球化学过程,样品保存,定量检测方法等方面进行研究。结论如下:pH, 氧化还原电位,硫化物含量和微生物作用等是影响地下水中硫代砷稳定存在和形态分布的重要因素。含铁矿物能与水中的硫代砷形成配位键对其进行吸附,吸附性普遍弱于(亚)砷酸盐,因此,地下水中硫代砷可能表现出更强的迁移性。用于硫代砷检测的自然水样在采集中可采取过滤,速冻,厌氧和低温短期保存的操作流程,以减缓该形态的转化甚至消失。色谱联用ICP-MS系统可用于自然水样中硫代砷的分离定量检测,紫外—可见分光光度法和X射线吸收光谱法在不同场景下也可对硫代砷进行定量和表征分析。地热水和浅层地下水中均可能存在硫代砷,由于水样中硫代砷的不稳定性,室内检测和分析难以准确反映现场过程,因此,野外样品保存技术和现场检测方法的更新可能在未来有更大研究空间,值得进一步探索。
Abstract:
Thioarsenic has been proved to be predominant species in sulfidic groundwaters, and is taken as threat to human health and the environment. Since our understanding of this species is far from comprehensive, based on survey of current research results in this field, this paper is focused on hydrologic-biological-environmental geochemical processes, sample preservation, separation and detection techniques of thioarsenic species, to demonstrate the latest advances in the thioarsenic studies. The results show that pH, Eh, concentration of sulfide and microorganism activities are key factors for the thioarsenic stability and speciation in groundwater. Iron-bearing minerals can form coordination bonds with thioarsenic to adsorb them, however, the capacity of adsorption are generally lower than those with arsenite and arsenate, making thioarsenic species easier to transport in groundwater systems. Filtration, quick-freezing and short time anaerobic cryopreservation can be used on natural water samples for thioarsenic analyses, in order to slow down the transformation or even disappear of thio species. IC-ICP-MS can be used in quantitative analyses of thioarsenic in natural water samples, and Ultraviolet-Visible Spectrophotometry and X-ray Absorption Spectrometry can be capable of quantitative characterization analysis of thioarsenic in different scenarios. Thioarsenic can be encountered in both shallow groundwater and geothermal water. Due to the unavoidable transformation of thioarsenic in water samples, it is difficult for indoor analyses to accurately reflect the geochemical processes. Thus, the update of field sample preservation technology and field detection method may have more research potential in the future.

参考文献/References:

[1]董一慧, 马腾, 周舒晗, 等. 涂铁石英砂去除水中As(Ⅴ)的实验研究[J]. 水文地质工程地质, 2015, 42(2):126-131.
[DONG Y H, MA T, ZHOU S H, et al. Experimental study of removal of As(V) from water with iron oxide-coated sand[J]. Hydrogeology & Engineering Geology, 2015, 42(2):126-131.(in Chinese)]
[2]KARIM M M. Arsenic in groundwater and health problems in Bangladesh[J]. Water Research, 2000,34(1):304-310.
[3]沈萌萌, 郭华明, 李晓萌, 等. 高砷含水层沉积物含铁矿物特性及其对砷的水文地球化学作用[J]. 水文地质工程地质, 2017, 44(2):1-7.
[SHEN M M, GUO H M, LI X M, et al. Characteristics of Fe oxide minerals and their roles in arsenic hydro geochemistry in high arsenic aquifer sediments[J]. Hydrogeology & Engineering Geology, 2017, 44(2):1-7. (in Chinese)]
[4]WEN B, ZHOU A, ZHOU J, et al. Coupled S and Sr isotope evidences for elevated arsenic concentrations in groundwater from the world’s largest antimony mine, Central China[J]. Journal of Hydrology, 2018,557:211-221.
[5]DENG Y M, WANG Y X, MA T, et al. Speciation and enrichment of arsenic in strongly reducing shallow aquifers at western Hetao Plain, northern China.[J]. Environmental Geology, 2009,56(7):1467-1477.
[6]张扬, 郭华明, 贾永峰, 等. 内蒙古河套平原典型高砷区地下水中砷的演化规律[J].水文地质工程地质, 2017, 44(2):15-22.
[ZHANG Y, GUO H M, JIA Y F, et al.Geochemical evolution of high arsenic groundwater in a typical area of the Hetao Basin,Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 15-22. (in Chinese)]
[7]ACHARYYA S K, CHAKRABORTY P, LAHIRI S, et al. Arsenic poisoning in the Ganges delta.[J]. Nature, 1999,401:546-547.
[8]KAPAJ S, PETERSON H. Human health effects from chronic arsenic poisoning:a review.[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2006,41(10):2399-2428.
[9]DEB D, BISWAS A, GHOSE A, et al. Nutritional deficiency and arsenical manifestations: a perspective study in an arsenic-endemic region of West Bengal, India.[J]. Public Health Nutrition, 2013, 16(9): 1644-1655.
[10]GONG Z, LU X, MA M, et al. Arsenic speciation analysis[J]. Talanta, 2002,58(1):77-96.
[11]NG J C, WANG J, SHRAIM A. A global health problem caused by arsenic from natural sources[J]. Chemosphere, 2003,52(9):1353-1359.
[12]LIU L, HE B, YUN Z, et al. Speciation analysis of arsenic compounds by capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry using a novel interface[J]. Journal of Chromatography A, 2013,1304(16):227-233.
[13]STAUDER S, RAUE B, SACHER F. Thioarsenates in sulfidic waters[J]. Environmental science & technology, 2005,39(16):5933-5939.
[14]HOLLIBAUGH J T, CARINI S, GURLEYUK H, et al. Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia[J]. Geochimica Et Cosmochimica Acta, 2005,69(8):1925-1937.
[15]WALLSCHLAGER D, STADEY C J. Determination of (oxy) thioarsenates in sulfidic waters[J]. Analytical chemistry, 2007,79(10):3873-3880.
[16]PLANER-FRIEDRICH B, LONDON J, MCCLESKEY R B, et al. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance[J]. Environmental science & technology, 2007,41(15):5245-5251.
[17]KELLER N S, STEFANSSON A, SIGFUSSON B. Arsenic speciation in natural sulfidic geothermal waters[J]. Geochimica et Cosmochimica Acta, 2014,142:15-26.
[18]SUESS E, PLANER-FRIEDRICH B. Thioarsenate formation upon dissolution of orpiment and arsenopyrite[J]. Chemosphere, 2012,89(11):1390-1398.
[19]WILKIN R T, WALLSCHLAGER D, FORD R G. Speciation of arsenic in sulfidic waters[J]. Geochemical Transactions, 2003,4(1):1.
[20]RADER K J, DOMBROWSKI P M, FARLEY K J, et al. Effect of thioarsenite formation on arsenic (III) toxicity[J]. Environmental toxicology and chemistry, 2004, 23(7):1649-1654.
[21]FRICKE M, ZELLER M, CULLEN W, et al. Dimethylthioarsinic anhydride: a standard for arsenic speciation[J]. Analytica Chimica Acta, 2007, 583(1): 78-83.
[22]YATHAVAKILLA S K V, FRICKE M, CREED P A, et al. Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix[J]. Analytical Chemistry, 2008,80(3):775-782.
[23]HELZ G R, TOSSELL J A, CHARNOCK J M, et al. Oligomerization in As (III) sulfide solutions: Theoretical constraints and spectroscopic evidence[J]. Geochimica Et Cosmochimica Acta, 1995, 59(22): 4591-4604.
[24]PLANER-FRIEDRICH B, FISHER J C, HOLLIBAUGH J T, et al. Oxidative transformation of trithioarsenate along alkaline geothermal drainages-abiotic versus microbially mediated processes[J]. Geomicrobiology Journal, 2009,26(5):339-350.
[25]PLANER-FRIEDRICH B, WALLSCHLAAGER D. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters[J]. Environmental Science & Technology, 2009,43(13):5007-5013.
[26]SCHWEDT G, RIECKHOFF M. Separation of thio-and oxothioarsenates by capillary zone electrophoresis and ion chromatography[J]. Journal of Chromatography A, 1996,736(1-2):341-350.
[27]KELLER N S, STEFANSSON A, SIGFUSSON B. Determination of arsenic speciation in sulfidic waters by ion chromatography hydride-generation atomic fluorescence spectrometry (IC-HG-AFS)[J]. Talanta, 2014,128:466-472.
[28]GUO Q, PLANER-FRIEDRICH B, LIU M, et al. Arsenic and thioarsenic species in the hot springs of the Rehai magmatic geothermal system, Tengchong volcanic region, China[J]. Chemical Geology, 2017,453:12-20.
[29]庄亚芹, 郭清海, 刘明亮, 等. 高温富硫化物热泉中硫代砷化物存在形态的地球化学模拟——以云南腾冲热海水热区为例[J]. 地球科学, 2016,41(9):1499-1510.
[ZHUANG Y Q, GUO Q H, LIU M L,et al. Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan[J]. Earth Science, 2016,41(9):1499-1510.(in Chinese)]
[30]CORNELIA H, BRITTA P. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring[J]. Environmental science & technology, 2012,46(8):4348-4356.
[31]HUG K, MAHER W A, FOSTER S, et al. Experimental evaluation of sampling, storage and analytical protocols for measuring arsenic speciation in sulphidic hot spring waters[J]. Microchemical Journal, 2017,130:162-167.
[32]WU G, HUANG L, JIANG H, et al. Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring[J]. Frontiers in Microbiology, 2017(8):1336.
[33]HUGHES M F. Arsenic toxicity and potential mechanisms of action[J]. Toxicology Letters, 2002,133(1):1.
[34]CHOONG T S Y, CHUAH T G, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: an overview[J]. Desalination, 2007, 217(1): 139-166.
[35]陈保卫, 那仁满都拉, 吕美玲, 等. 砷的代谢机制、毒性和生物监测[J]. 化学进展, 2009,21(2):474-482.
[CHEN B W, NARANMANDURA H, LYU M L,et al. Metabolism, Toxicity, and Biomonitoring of Arsenic Species[J]. Progress in Chemistry, 2009, 21(2): 474-482.(in Chiese)]
[36]JOMOVA K, JENISOVA Z, FESZTEROVA M, et al. Arsenic: toxicity, oxidative stress and human disease.[J]. Journal of Applied Toxicology, 2015,31(2):95-107.
[37]PLANER FRIEDRICH B, FRANKE D, MERKEL B, et al. Acute toxicity of thioarsenates to Vibrio fischeri[J]. Environmental Toxicology and Chemistry, 2008, 27(10): 2027-2035.
[38]PLANER-FRIEDRICH B, KUHNLENZ T, HALDER D, et al. Thioarsenate toxicity and tolerance in the model system Arabidopsis thaliana[J]. Environmental Science & Technology, 2017,51(12):7187-7196.
[39]HUA N, NORIYUKI SUZUKI A, SUZUKI K T. Trivalent arsenicals are bound to proteins during reductive methylation[J]. Chemical Research in Toxicology, 2006,19(8):1010.
[40]KUBACHKA K M, KOHAN M C, HERBINDAVIS K, et al. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS.[J]. Toxicology & Applied Pharmacology, 2009,239(2):137-143.
[41]RAAB A, WRIGHT S H, JASPARS M, et al. Pentavalent arsenic can bind to biomolecules.[J]. Angewandte Chemie, 2010,46(15):2594-2597.
[42]YEHIAYAN L, PATTABIRAMAN M, KAVALLIERATOS K, et al. Speciation, formation, stability and analytical challenges of human arsenic metabolites.[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(10): 1397-1405.
[43]MANDAL B K, SUZUKI K T, ANZAI K, et al. A SEC-HPLC-ICP MS hyphenated technique for identification of sulfur-containing arsenic metabolites in biological samples[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2008,874(1):64-76.
[44]NARANMANDURA H, SUZUKI K T. Formation of dimethylthioarsenicals in red blood cells.[J]. Toxicology & Applied Pharmacology, 2008, 227(3): 390-399.
[45]SUZUKI K T, LWATA K, HUA N, et al. Metabolic differences between two dimethylthioarsenicals in rats[J]. Toxicology & Applied Pharmacology, 2007, 218(2):166-173.
[46]SUN Y, LIU G, CAI Y. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications[J]. Journal of Environmental Sciences, 2016,49:59-73.
[47]RAVEN K P, AMITA JAIN A, LOEPPERT R H. Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes[J]. Environmental Science & Technology, 1998, 32(3): 344-349.
[48]COUTURE R, ROSE J, KUMAR N, et al. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: A kinetic and spectroscopic investigation[J]. Environmental science & technology, 2013,47(11):5652-5659.
[49]XIAO F, WANG S, XU L, et al. Adsorption of monothioarsenate on amorphous aluminum hydroxide under anaerobic conditions[J]. Chemical Geology, 2015,407:46-53.
[50]MCCLESKEY R B, NORDSTROM D K, MAEST A S. Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results[J]. Applied Geochemistry, 2004,19(7):995-1009.
[51]SMIEJA J A, WILKIN R T. Preservation of sulfidic waters containing dissolved As(III)[J]. Journal of Environmental Monitoring Jem, 2004,5(6):913-916.
[52]KUMAR A R, RIYAZUDDIN P. Preservation of inorganic arsenic species in environmental water samples for reliable speciation analysis[J]. Trends in Analytical Chemistry, 2010,29(10):1212-1223.
[53]王敏黛, 郭清海, 郭伟, 等. 硫代砷化物的合成、鉴定和定量分析方法研究[J]. 分析化学, 2016,44(11):1715-1720.
[WANG M D, GUO Q H, GUO W, et al. Study on synthesis, identification and quantitative analysis of thioarsenics[J]. Chinese Journal of Analytical Chemistry, 2016, 44(11): 1715-1720.(in Chinese)]
[54]SUESS E, WALLSCHLAGER D, PLANER-FRIEDRICH B. Stabilization of thioarsenates in iron-rich waters[J]. Chemosphere, 2011,83(11):1524-1531.
[55]SUESS E, MEHLHORN J, PLANER-FRIEDRICH B. Anoxic, ethanolic, and cool-An improved method for thioarsenate preservation in iron-rich waters[J]. Applied Geochemistry, 2015,62:224-233.
[56]ZAKAZNOVA-HERZOG V P, SEWARD T M. A spectrophotometric study of the formation and deprotonation of thioarsenite species in aqueous solution at 22 ℃[J]. Geochimica et Cosmochimica Acta, 2012,83:48-60.
[57]BOSTICK B C, FENDORF S, BROWN G E. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions[J]. Mineralogical Magazine, 2005,69(5):781-795.
[58]HELZ G R, TOSSELL J A. Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations[J]. Geochimica Et Cosmochimica Acta, 2008,72(18):4457-4468.
[59]THILO E, HERTZOG K, WINKLER A. ber Vorg nge bei der Bildung des Arsen(V)-sulfids beim Ans uern von Tetrathioarsenatl sungen[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1970, 373(2): 111-121.

相似文献/References:

[1]刘立才,郑凡东,张春义.南水北调水源与北京地下水混合的水质变化特征[J].水文地质工程地质,2012,39(1):1.
 LIU Li cai,ZHENG Fan dong,ZHANG Chun yi.Characteristics of water quality of SouthtoNorth water diversion mixed with groundwater in Beijing[J].Hydrogeology & Engineering Geology,2012,39(06):1.
[2]赵娇娟,郝永红,李华敏,等.基于地下水压力波传播过程的泉水流量灰色系统模型[J].水文地质工程地质,2011,38(6):1.
 ZHAO Jiao-juan,HAO Yong-hong,LI Hua-min,et al.Grey model for karst spring discharge based on propagation process of groundwater pressure wave[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[3]蔡五田,张敏,刘雪松,等.论场地土壤和地下水污染调查与风险评价的程序和内容[J].水文地质工程地质,2011,38(6):125.
 CAI Wu-tian,ZHANG Ming,LIU Xue-song,et al.On procedure and contents of investigation and risk assessment with regard to site soil and groundwater contamination[J].Hydrogeology & Engineering Geology,2011,38(06):125.
[4]李华,焦彦杰,吴文贤,等.西南岩溶地区找水的地球物理方法探讨[J].水文地质工程地质,2011,38(5):1.
 LI Hua,JIAO Yan-jie,WU Wen-xian,et al.A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[5]徐力刚,叶昌,张奇,等.基于模糊模式识别的地下水水质综合评价研究[J].水文地质工程地质,2011,38(5):7.
 XU Li-gang,YE Chang,ZHANG Qi,et al.Application of fuzzy pattern recognition for the comprehensive assessment of groundwater quality[J].Hydrogeology & Engineering Geology,2011,38(06):7.
[6]赵振华,袁革新,吴吉春,等.西北某放射性废物处置预选区地下水水化学特征及地球化学模拟[J].水文地质工程地质,2011,38(4):1.
 ZHAO Zhen-hua,YUAN Ge-xin,WU Ji-chun,et al.Hydrochemical characteristics and hydrogeochemical modeling of groundwater in a certain potential radioactive waste disposal site in Northwest China[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[7]王金婷,毕二平.油田区地下水系统特殊防污性能评价[J].水文地质工程地质,2011,38(3):82.
 WANG Jin-ting,BI Er-ping.Evaluation of specific vulnerability of a groundwater system in an oilfield[J].Hydrogeology & Engineering Geology,2011,38(06):82.
[8]徐海珍,李国敏,张寿全,等.北京市平谷盆地地下水三维数值模拟及管理应用[J].水文地质工程地质,2011,38(2):27.
 XU Hai-zhen,LI Guo-min,ZHANG Shou-quan,et al.Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J].Hydrogeology & Engineering Geology,2011,38(06):27.
[9]余婷婷,甘义群,刘存富,等.基于单体多维稳定同位素分析的地下水有机污染研究进展[J].水文地质工程地质,2011,38(1):103.
 YU Ting-ting,GAN Yi-qun,LIU Cun-fu,et al.Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination[J].Hydrogeology & Engineering Geology,2011,38(06):103.
[10]张茂省,董英,孙萍萍,等.基于水位的赵家岸滑坡风险分析与控制[J].水文地质工程地质,2011,38(1):123.
 ZHANG Mao-sheng,DONG Ying,SUN Ping-ping,et al.Risk analysis and control of the Zhaojiaan landslide through controlling water levels[J].Hydrogeology & Engineering Geology,2011,38(06):123.

备注/Memo

备注/Memo:
收稿日期: 2018-09-04; 修订日期: 2018-12-14
基金项目: 国家自然科学基金资助项目(41861134028;41572335;41772370)
第一作者: 严克涛(1992-),男,博士研究生,从事高温地热流体地球化学领域的研究工作。E-mail: yanktwork@gmail.com
通讯作者: 郭清海(1978-),男,教授,博士生导师,主要从事高温地热流体地球化学领域的研究工作。E-mail: qhguo2006@gmail.com
更新日期/Last Update: 2019-11-15