[1]刘倩萁,张孟喜,洪成雨.基于光纤传感技术的土工格栅变形及受力研究[J].水文地质工程地质,2019,46(06):119-125.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.16]
 LIU Qianqi,ZHANG Mengxi,HONG Chengyu.A study of deformation and stress of geogrids based on optical fiber sensing technology[J].Hydrogeology & Engineering Geology,2019,46(06):119-125.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.16]
点击复制

基于光纤传感技术的土工格栅变形及受力研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
119-125
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
A study of deformation and stress of geogrids based on optical fiber sensing technology
文章编号:
1000-3665(2019)06-0119-07
作者:
刘倩萁1张孟喜1洪成雨12
1.上海大学土木工程系,上海200444;2.深圳大学土木与交通工程学院,广东 深圳518060
Author(s):
LIU Qianqi1ZHANG Mengxi1HONG Chengyu21
1.Department of Civil Engineering,Shanghai University,Shanghai200444,China;2.College of Civil and Transportation on Engineering,Shenzhen University,Shenzhen,Guangdong518060,China
关键词:
光纤传感技术土工格栅加筋土边坡模型试验变形测量封装结构加筋效果
Keywords:
optical fiber sensing technology geogrids reinforced soil slope model test deformation measurement packaging structure reinforcement effect
分类号:
TU411.3
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.16
文献标志码:
A
摘要:
光纤传感技术具有精度高、灵敏度高的特点,在变形测量方面具有独特优势。但由于缺乏有效的封装保护技术,目前将光纤传感器用于土工合成材料变形监测的应用和研究比较少。文章通过对光纤传感器的封装结构进行设计,较好地解决了光纤传感器与被测物体间的协调变形问题,并延长了光纤传感器的使用寿命。基于此封装结构,通过室内土工格栅加筋边坡模型试验,选取土工格栅的加筋层数及筋材的布设方式作为变量,研究了土工格栅在加筋过程中的变形及受力特性。研究结果表明:在垂直方向上,上层筋材的应变大于下层筋材的应变;在水平方向上,单层变形最大处位于加载点正下方范围内。增加加筋层数,能够使得各层格栅的变形得到分担,同时有效限制坡面的法向位移,尤其是坡面中上部分的法向位移;土工格栅能够显著提高边坡的极限承载力。通过对光纤传感器的研究,表明其能够灵敏监测被测物体的微小变形与受力,实际使用中较为稳定,验证了本文封装结构设计的可行性,弥补了传统测量方法的缺陷。
Abstract:
As a new type of sensing technology, the optical fiber sensing technology are characterized by high accuracy and sensitivity, and are suitable for deformation measurement. At present, due to the lack of effective packaging protection methods, the deformation monitoring of geogrids by using optical fiber sensors is seldom conducted. In this paper, the packaging structure of the optical fiber sensor is designed. The package structure may solve the problem of coordinated deformation between the optical fiber sensor and geogrids, and prolong the life of the optical fiber sensor. Based on the reinforced soil slope model test, the number of reinforcement layers and spacing of geogrids are selected as variables to study the deformation and stress characteristics of geogrids. The results show that the deformation of upper reinforcement is larger than that of lower reinforcement along the vertical direction, and the maximum strain of the reinforcement is in the area below the loading point. Newly increased geogrids can effectively share the deformation of initial geogrids and limit the lateral normal displacement of the slope, especially the displacement of the upper and middle parts of the slope. Geogrids can remarkably improve the ultimate bearing capacity of slope. This also study indicates that the optical fiber sensor can sensitively monitor the tiny deformation and stress of geogrids. The packaging structure can effectively remedy the shortcomings of the traditional testing methods.

参考文献/References:

[1]周志刚,郑健龙,宋蔚涛. 土工格栅加筋柔性桥台的机理分析[J]. 中国公路学报,2000,13(1):18-21.
[ZHOU Z G,ZHENG J L,SONG W T. Analysis of mechanism of flexible abutment reinforced by geogrids[J]. China Journal of Highway and Transport,2000,13(1):18-21. (in Chinese)]
[2]田小革,应荣华,张起森. 应用土工格栅处理软土地基上的桥头跳车问题[J]. 岩土工程学报,2000,22(6):744-746.
[TIAN X G,YING R H,ZHANG Q S. Applying geogrids to deal with the bumping at bridge-head on soft foundation.[J]. Chinese Journal of Geotechnical Engineering,2000,22(6):744-746. (in Chinese)]
[3]周志刚,张起森,郑健龙. 土工加筋技术在公路铁路工程中应用研究新进展[J]. 交通科学与工程,2002,18(1):34-39.
[ZHOU Z G,ZHANG Q S,ZHENG J L. The recent achievement of research and application of geotechnical reinforcement technology in highway and railway engineering[J]. Journal of Transportation Science and Engineering,2002,18(1):34-39. (in Chinese)]
[4]ALAWAJI H A. Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil[J]. Geotextiles & Geomembranes,2001,19(2):75-88.
[5]马闫,谢婉丽,彭淑君,等. 加筋方式对黄土动力特性影响三轴试验研究[J]. 水文地质工程地质,2017,44(4):50-56.
[MA Y,XIE W L,PENG S J,et al. Influence of the reinforce scheme on dynamic properties of the reinforced loess with dynamic triaxial test[J]. Hydrogeowgy & Engineering Gedogy,2017,44(4):50-56. (in Chinese)]
[6]金家庆,徐超,梁程,等. 土工格室加筋垫层路堤破坏模式和稳定性评价[J]. 水文地质工程地质,2019,46(1):86-94.
[JIN J Q,XU C,LIANG C,et al. Failure mode and stability evaluation of geocell-reinforced cushion embankment[J]. Hydrogeowgy & Engineering Gedogy,2019,46(1):86-94. (in Chinese)]
[7]WANG Z,JACOBS F,ZIEGLER M. Visualization of load transfer behavior between geogrid and sand using PFC 2D[J]. Geotextiles and Geomembranes,2014,42(2):83.
[8]胡卫国,何桥敏. 土工格栅在填方路堤中的加筋作用试验研究[J]. 中外公路,2018,38(1):38-42.
[HU W G,HE Q M. Experimental study on reinforcement of geogrid in filled embankment[J]. Journal of China & Foreign Highway,2018,38(1):38-42. (in Chinese)]
[9]杨庆,季大雪,栾茂田,等. 土工格栅加筋路堤边坡结构性能模型试验研究[J]. 岩土力学,2005,26(8):1243-1246.
[YANG Q,JI D X,LUAN M T,et al. Studies on structural of embankment slopes reinforced by geogrids with model tests[J]. Rock and Soil Mechanics,2005,26(8):1243-1246. (in Chinese)]
[10]张发春. 土工格栅加筋土高挡墙的现场试验研究[J]. 中国铁道科学,2008,29(4):1-7.
[ZHANG F C. Field test research on geogrid reinforced earth high retaining wall[J]. China Railway Science,2008,29(4):1-7. (in Chinese)]
[11]顾春生,龚绪龙,孙强,等. 基于光纤传感技术的地裂缝物理模型试验[J]. 水文地质工程地质,2018,45(3):124-129.
[GU C S,GONG X L,SUN Q,et al. Model tests on the ground fissures based on the optical fiber sensing technology[J]. Hydrogeowgy & Engineering Gedogy,2018,45(3):124-129. (in Chinese)]
[12]朱赵辉,任大春,李秀文,等. 光纤光栅位移计组在围岩变形连续监测中的应用研究[J]. 岩土工程学报,2016,38(11):2093-2100.
[ZHU Z H,REN D C,LI X W,et al. Application of fiber Bragg grating displacement meter groups in continuous monitoring of deformation of surrounding rock[J]. Chinese Journal of Geotechnical Engineering,2016,38(11):2093-2100. (in Chinese)]
[13]刘永莉,管振德,肖衡林.基于BOTDR技术的深埋岩溶土洞监测分析[J].中国岩溶,2018,37(3):427-432.
[LIU Y L,GUAN Z D,XIAO H L.Monitoring and analysis of deep buried karst soil caves based on BOTDR technology[J].Carsologica Sinica,2018,37(3):427-432.(in Chinese)]
[14]朱鸿鹄,施斌,严珺凡. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报,2013,32(4):821-828.
[ZHU H H,SHI B,YAN J F. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(4):821-838. (in Chinese)]
[15]丁勇,施斌,崔何亮,等. 光纤传感网络在边坡稳定监测中的应用研究[J]. 岩土工程学报,2005,27(3):338-342.
[DING Y,SHI B,CUI H L,et al. A fiber optic sensing net applied in slope monitoring based on Brillouin scattering[J]. Chinese Journal of Geotechnical Engineering,2005,27(3):338-342. (in Chinese)]
[16]李焕强,孙红月,刘永莉,等. 光纤传感技术在边坡模型试验中的应用[J]. 岩石力学与工程学报,2008,27(8):1703-1708.
[LI H Q,SUN H Y,LIU Y L,et al. Application of optical fiber sensing technology to slope model test[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1703-1708. (in Chinese)]
[17]张燕君,黄保凯,韦波,等. 基于布拉格光栅的边坡监测实验研究[J]. 光学技术,2011,37(2):208-212.
[ZHANG Y J,HUANG B K,WEI B,et al. Application of optical fiber sensing technology to slope model test[J]. Optical Technique,2011,37(2):208-212. (in Chinese)]
[18]HONG C Y,ZHANG Y F,ZHANG M X,et al. Application of FBG sensors for geotechnical health monitoring,a review of sensor design,implementation methods and packaging techniques[J]. Sensors & Actuators A:Physical,2016,244:184-197.
[19]HONG C Y,ZHANG Y F,YANG Y Y,et al. A FBG based displacement transducer for small soil deformation measurement[J]. Sensors and Actuators A:Physical,2019,286:35-42.

相似文献/References:

[1]杨果林,黄向京,赵伟,等.红粘土桩-网复合地基现场试验研究[J].水文地质工程地质,2010,37(1):85.
 YANG Guo-lin,HUANG Xiang-jing,ZHAO Wei.Experimental study on pile-net composite foundation of red clay[J].Hydrogeology & Engineering Geology,2010,37(06):85.
[2]顾春生,龚绪龙,孙强,等.基于光纤传感技术的地裂缝物理模型试验[J].水文地质工程地质,2018,45(03):118.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.16]
 GU Chunsheng,GONG Xulong,SUN Qiang,et al.Model tests on the ground fissures based on the optical fiber sensing technology[J].Hydrogeology & Engineering Geology,2018,45(06):118.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.16]

备注/Memo

备注/Memo:
收稿日期: 2019-01-23; 修订日期: 2019-04-17
第一作者: 刘倩萁(1994-),女,硕士研究生,主要从事加筋土及土工合成材料方面的研究。E-mail:qianqi_liu@126.com
通讯作者: 张孟喜(1963-),男,教授,主要从事岩土力学、地下结构方面的科学研究。E-mail:mxzhang@i.shu.edu.cn
更新日期/Last Update: 2019-11-15