[1]刘希康,徐金明.使用相对熵研究花岗岩的损伤演化特征[J].水文地质工程地质,2019,46(06):105-111.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.14]
 LIU Xikang,XU Jinming.A study of damage evolutions of granites by using relative entropy[J].Hydrogeology & Engineering Geology,2019,46(06):105-111.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.14]
点击复制

使用相对熵研究花岗岩的损伤演化特征()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
105-111
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
A study of damage evolutions of granites by using relative entropy
文章编号:
1000-3665(2019)06-0105-07
作者:
刘希康徐金明
上海大学土木工程系,上海200444
Author(s):
LIU Xikang XU Jinming
Department of Civil Engineering, Shanghai University, Shanghai200444, China
关键词:
花岗岩视频图像处理相对熵局部化特征岩石损伤
Keywords:
granite video image processing relative entropy localized featurerock damage evolution
分类号:
P614.22+2
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.14
文献标志码:
A
摘要:
岩石试件表面的视频图像可作为试件表面变形破坏的信息载体。为从试验视频图像中分析出定量的信息,文章提出一种描述岩石损伤演化的新方法:计算基准图像与对比图像的相对熵,用相对熵表征变形和破裂的发展,将相对熵明显上升阶段的起点作为试件损伤演化的启动时刻。根据花岗岩试件室内单轴压缩试验拍摄的试验视频,使用灰度分界阈值分割法得到了试件各细观组分的分布,使用相对熵表征试件中不同位置、不同组分的损伤演化特征,分析了试件全局区域的损伤演化阶段,探讨了损伤演化过程与组分类型、位置之间的关系。结果表明:试件损伤从试件中部开始,先扩展至左下,再扩展至右上;组分损伤的先后顺序为长石、石英、黑云母,且损伤大小顺序为石英>长石>黑云母;黑云母损伤从右上开始、然后扩展至中部,石英损伤从中部开始、先后扩展至左下和右上部位,长石损伤从上部开始、先后扩展至中部和下部。
Abstract:
The video images of specimen surface can be used as an information carrier for the deformation and failure of a rock. In this paper, a quantitative analysis method for video images photographed from loaded rock specimen is proposed to evaluate its damage evolution. The extent of deformation and crack propagation can be expressed by using relative entropy. The rapid increase in the relative entropy is then used as the starting instant of the damage evolution. In the current study, using the video images photographed during the laboratory uniaxial compression test of the granite specimen, the distributions of compositions are determined by the gray threshold segmentation. The relative entropy is used to represent the damage evolution features of the compositions at various locations. The damage evolution process of the whole specimen is thereafter investigated. The relationship between the damage evolution and the types and locations of the compositions are furthermore explored. The results show that the damage of the specimen starts from the middle region and extends successively to the lower-left and upper-right regions, and the damage sequence is feldspar, quartz and biotite with the degree orders of quartz, feldspar and biotite. The biotite damages from the upper-right region and extends to the middle region, quartz damages from the middle region and extends successively to the lower-left and upper-right regions, while the feldspar damages from the upper region and extends successively to the middle and lower regions.

参考文献/References:

[1]PARASKEVOPOULOU C, PERRAS M, DIEDERICHS M, et al. Time-dependent behaviour of brittle rocks based on static load laboratory tests[J]. Geotechnical and Geological Engineering, 2018, 36(1): 337-376.
[2]NEJATI H R, GHAZVINIAN A. Brittleness effect on rock fatigue damage evolution [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1839-1848.
[3]GAUTAM P K, VERMA A K, SHARMA P, et al. Evolution of thermal damage threshold of Jalore granite[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2949-2956.
[4]申艳军, 杨更社, 荣腾龙, 等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析 [J]. 岩石力学与工程学报, 2017, 36(3): 562-570.
[ SHEN Y J, YANG G S , RONG T L, et al. Localized damage effects of quasi-sandstone with single fracture and fracture behaviors of joint end under cyclic freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 562-570. (in Chinese) ]
[5]付小凤. 渗流-应力耦合作用下砂岩声发射及分形损伤特征研究 [J]. 水文地质工程地质, 2017, 44(6): 83-88.
[ FU X F. A study of the acoustic emission and fractal damage of sandstone under the coupling of seepage and stress [J]. Hydrogeology & Engineering Geology, 2017, 44(6): 83-88. (in Chinese) ]
[6]MüLLER C, FRüHWIRT T, HAASE D, et al. Modeling deformation and damage of rock salt using the discrete element method [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 230-241.
[7]WANG S Y, SLOAN S W, SHENG D C, et al. Numerical analysis of the failure process around a circular opening in rock [J]. Computers and Geotechnics, 2012, 39: 8-16.
[8]王青元, 朱万成, 刘洪磊, 等. 单轴压缩下绿砂岩长期强度的尺寸效应研究 [J]. 岩土力学, 2016, 37(4): 981-990.
[ WANG Q Y, ZHU W C, LIU H L, et al. Size effect of long-term strength of sandstone under uniaxial compression [J]. Rock and Soil Mechanics, 2016, 37(4): 981-990. (in Chinese) ]
[9]孙金山, 陈明, 姜清辉, 等. 锦屏大理岩蠕变损伤演化细观力学特征的数值模拟研究 [J]. 岩土力学, 2013, 34(12): 3601-3608. [ SUN J S, CHEN M, JIANG Q H, et al. Numerical simulation of mesomechanical characteristics of creep damage evolution for Jingping marble [J]. Rock and Soil Mechanics, 2013, 34(12): 3601-3608. (in Chinese) ]
[10]付金伟, 朱维申, 张敦福, 等. 渗流影响下岩石损伤和渐进破裂演化过程的数值试验研究 [J]. 水文地质工程地质, 2015, 42(1): 54-59. [ FU J W, ZHU W S, ZHANG D F, et al. Numerical study of the damage and progressive failure process of rocks under the effect of seepage [J]. Hydrogeology & Engineering Geology, 2015, 42(1): 54-59. (in Chinese) ]
[11]TAROKH A , KAO C S, FAKHIMI A, et al. Insights on surface spalling of rock [J]. Computational Particle Mechanics, 2016, 3: 391-405.
[12]SONG H, ZHANG H, FU D, et al. Experimental study on damage evolution of rock under uniform and concentrated loading conditions using digital image correlation [J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(8): 760-768.
[13]杨小彬, 韩心星, 刘恩来, 等. 循环加卸载下花岗岩非均匀变形演化的声发射特征试验研究 [J]. 岩土力学, 2018, 39(8): 2732-2739.
[ YANG X B, HAN X X, LIU E L, et al. Experimental study on the acoustic emission characteristics of non-uniform deformation evolution of granite under cyclic loading and unloading test [J]. Rock and Soil Mechanics, 2018, 39(8): 2732-2739. (in Chinese) ]
[14]赵程, 刘丰铭, 田加深, 等. 基于单轴压缩试验的岩石单裂纹扩展及损伤演化规律研究 [J]. 岩石力学与工程学报, 2016, 35(增刊2): 3626-3632.
[ ZHAO C, LIU F M, TIAN J S, et al. Study on single crack propagation and damage evolution mechanism of rock-like materials under uniaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup2): 3626-3632. (in Chinese) ]
[15]孙继平, 陈浜. 基于小波域非对称广义高斯模型的煤岩识别算法 [J]. 煤炭学报, 2015, 40(增刊2): 568-575.
[ SUN J P, CHEN B. A coal-rock recognition algorithm using wavelet-domain asymmetric generalized Gaussian models [J]. Journal of China Coal Society, 2015, 40(Sup2): 568-575. (in Chinese) ]
[16]刘慧, 杨更社, 叶万军, 等. 基于CT图像的冻结岩石冰含量及损伤特性分析 [J]. 地下空间与工程学报, 2016, 12(4): 912-919.
[ LIU H, YANG G S, YE W J,et al. Analysis of ice content and damage characteristics of frozen rock based on pseudo-color enhanced CT image [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 912-919. (in Chinese) ]
[17]邹飞, 李海波, 周青春, 等. 基于数字图像灰度相关性的类岩石材料损伤分形特征研究 [J]. 岩土力学, 2012, 33(3): 731-738.
[ ZOU F, LI H B, ZHOU Q C, et al. Fractal features study of rock-like material damage based on gray correlation of digital image [J]. Rock and Soil Mechanics, 2012, 33(3): 731-738. (in Chinese) ]
[18]杨更社, 刘慧. 基于CT图像处理技术的岩石损伤特性研究 [J]. 煤炭学报, 2017, 32(5): 463-468.
[ YANG G S, LIU H. Study on the rock damage characteristics based on the technique of CT image processing [J]. Journal of China Coal Society, 2017, 32(5): 463-468. (in Chinese) ]

相似文献/References:

[1]孙知新,李百祥,王志林,等.青海共和盆地存在干热岩可能性探讨[J].水文地质工程地质,2011,38(2):119.
 SUN Zhi-xin,LI Bai-xiang,WANG Zhi-lin.Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin[J].Hydrogeology & Engineering Geology,2011,38(06):119.
[2]张 岩,徐金明,张文清.使用图像分析方法研究单轴压缩条件下花岗岩中细观组分的定向性变化[J].水文地质工程地质,2012,39(2):66.
 ZHANG Yan,XU Jin-ming,ZHANG Wen-qing.Orientation of meso-components in granite under uniaxial compression using image analysis[J].Hydrogeology & Engineering Geology,2012,39(06):66.
[3]杨天春,张正发,许德根,等.花岗岩地区浅部地下水井位的快速确定[J].水文地质工程地质,2017,44(5):20.
 YANG Tianchun,ZHANG Zhengfa,XU Degen,et al.Fast determination of shallow groundwater wells in a granite area[J].Hydrogeology & Engineering Geology,2017,44(06):20.
[4]尚彦军,金维浚,袁广祥,等.大亚湾花岗岩某钻孔雨季水位持续走高原因探析[J].水文地质工程地质,2017,44(6):15.
 SHANG Yanjun,JIN Weijun,YUAN Guangxiang,et al.An analysis of the continual rise in groundwater levels in a rainy season at one borehole in granite near the Daya Bay[J].Hydrogeology & Engineering Geology,2017,44(06):15.
[5]李鸿儒,王志亮,郝士云.主动围压下花岗岩动态力学特性与本构模型研究[J].水文地质工程地质,2018,45(03):49.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.06]
 LI Hongru,WANG Zhiliang,HAO Shiyun.A study of the dynamic properties and constitutive model of granite under active confining pressures[J].Hydrogeology & Engineering Geology,2018,45(06):49.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.06]
[6]袁广祥,张路青,曾庆利,等.花岗岩矿物组成与其单轴抗压强度的相关性研究[J].水文地质工程地质,2018,45(5):93.[doi:10.16030/j.cnki.issn.1000-3665.2018.05.13]
 YUAN Guangxiang,ZHANG Luqing,ZENG Qingli,et al.Correlation of the mineralogical characteristics with the uniaxial compressive strength of granite[J].Hydrogeology & Engineering Geology,2018,45(06):93.[doi:10.16030/j.cnki.issn.1000-3665.2018.05.13]
[7]钟靖涛,王志亮,田诺成.花岗岩循环爆破振动衰减规律与损伤演化机理试验[J].水文地质工程地质,2019,46(3):101.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.14]
 ZHONG Jingtao,WANG Zhiliang,TIAN Nuocheng.An experiment of attenuation law of vibration and evolution mechanism of damage of granite under cyclic blasting[J].Hydrogeology & Engineering Geology,2019,46(06):101.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.14]

备注/Memo

备注/Memo:
收稿日期: 2019-04-18; 修订日期: 2019-05-28
第一作者: 刘希康(1994-),男,硕士,主要从事岩土工程科研工作。E-mail: lxikang@163.com
通讯作者: 徐金明(1963-),男,博士,教授,博士生导师,主要从事工程地质与岩土工程的教学与科研工作。E-mail: xjming@163.com
更新日期/Last Update: 2019-11-15