[1]何俊,栗志翔,石小康,等.侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J].水文地质工程地质,2019,46(06):83-89.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.11]
 HE Jun,LI Zhixiang,SHI Xiaokang,et al.Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J].Hydrogeology & Engineering Geology,2019,46(06):83-89.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.11]
点击复制

侵蚀环境中碱渣-矿渣固化淤泥的力学性质()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
83-89
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment
文章编号:
1000-3665(2019)06-0083-07
作者:
何俊栗志翔石小康王小琦
湖北工业大学土木建筑与环境学院,湖北 武汉430068
Author(s):
HE Jun LI Zhixiang SHI Xiaokang WANG Xiaoqi
Scholl of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan, Hubei430068, China
关键词:
碱渣矿渣固化淤泥侵蚀
Keywords:
soda residue ground granulated blast furnace slag soil stabilization soft soil erosion
分类号:
TU 411.3
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.11
文献标志码:
A
摘要:
为扩展碱渣和矿渣等工业固体废弃物的资源化利用途径,以碱渣和矿渣为固化剂对淤泥进行固化处理,开展侵蚀环境条件下固化淤泥试样的表观和无侧限抗压强度等性质试验研究,探讨侵蚀溶液对固化淤泥的作用机理。研究表明,自来水和30 g/L的NaCl溶液浸泡时,标准养护28 d的固化土表面完整性较好,试样密度随浸泡时间的增加而增大;15 g/L的MgSO4溶液和NaCl-MgSO4混合溶液浸泡时,固化土表面受到明显侵蚀,随着浸泡时间的增加,侵蚀程度逐渐加深,试样体积、质量和密度呈减小趋势。当浸泡时间从28 d增至42 d时,自来水浸泡试样的无侧限抗压强度增大,溶液浸泡试样的无侧限抗压强度基本保持不变;浸泡导致试样的延性增强,抵抗变形的能力减弱。在浸泡时间相同的条件下,MgSO4和NaCl-MgSO4混合溶液浸泡时固化土强度约为自来水和NaCl溶液浸泡时强度的一半,抵抗变形的能力也较弱。钙矾石、水化氯铝酸钙等水化产物的形成使碱渣-矿渣固化淤泥抗NaCl侵蚀能力强,但由于侵蚀作用形成微观裂隙及疏松结构导致其抗MgSO4侵蚀能力较弱。
Abstract:
Soda residue (SR) and ground granulated blast furnace slag (GGBS) can be used as effective stabilizer for soft soil. However, the behavior of the SR-GGBS stabilized soil in the presence of soaking is seldom examined. In order to reveal the performance of SR-GGBS stabilized soft soil under the erosion environment, visual observations and unconfined compressive strength tests are conducted, and the scanning electron microscopy is used to discuss the mechanism. The results indicate that the samples in tap water or 30 g/L NaCl solution are intact, and the density increases with the soaking time. In 15 g/L MgSO4 solution or mixed solution, the samples are eroded obviously, and the volume, mass and density decrease with the soaking time. When the soaking time increases from 28 d to 42 d, the unconfined compressive strength of the samples in tap water increases, and the strength of the samples in solution remains unchanged. The soaking results in the increase of ductility and decrease of deformation resistance. At the same soaking time, the strength of the samples in MgSO4 solution or mixed solution is about half that in tap water or NaCl solution. The ability to resist deformation is also weak for the samples in MgSO4 solution or mixed solution. The formation of hydration products such as ettringite and calcium chloraluminate hydrate in SR-GGBS stabilized soil is helpfull to resist to NaCl erosion, while its resistance to MgSO4 erosion is weak due to the micro-cracks and loose structure. The results will contribute to the use of SR and GGBS as stabilizers for soft soil in the complex environment.

参考文献/References:

[1]中华人民共和国住房和城乡建设部. 建筑地基处理技术规范:JGJ79-2012[S]. 北京: 中国建筑工业出版社,2013.
[P. R. C. Ministry of Housing and Urban-Rural Development. Technical Code for Ground Treatment of Buildings:JGJ79-2012[S]. Beijing: China Architecture and Building Press,2013. (in Chinese)]
[2]刘松玉, 李晨. 氧化镁活性对碳化固化效果影响研究[J]. 岩土工程学报, 2015, 37(1): 148-155.
[LIU S Y, LI C. Influence of MgO activity on stabilization efficiency of carbonated mixing method [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 148-155.(in Chinese)]
[3]邓永锋, 吴子龙, 刘松玉, 等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 38(3): 446-453.
[DENG Y F, WU Z L, LIU S Y, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453.(in Chinese)]
[4]黄新, 胡同安. 水泥-废石膏加固软土的试验研究[J]. 岩土工程学报, 1998, 20 (5): 72-76.
[HUANG X, HU T A. On stabilization of soft soil with waste gypsum and cement [J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (5): 72-76. (in Chinese)]
[5]YOOBANPOT N, JAMSAWANG P, HORPIBULSUK S. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue [J]. Applied Clay Science, 2017, 141: 146-156.
[6]YI Y, GU L, LIU S, et al. Carbide slag activated ground granulated blastfurnace slag for soft clay stabilization [J]. Canadian Geotechnical Journal, 2015, 52(5), 656-663.
[7]HE J, WANG X, SU Y, et al. Shear strength of stabilized clay treated with soda residue and ground granulated blast furnace slag[J]. Journal of Materials in Civil Engineering, 2019,31(3):06018029.
[8]饶春义,朱剑锋,庹秋水.镁质水泥固化淤泥一维压缩特性研究[J]. 水文地质工程地质,2018,45(4):94-99.
[RAO C Y, ZHU J F, TUO Q S. A study of the 1D compression characteristics of magnesia cement silt[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 94-99.(in Chinese)]
[9]韩鹏举, 白晓红, 赵永强, 等. Mg2+和SO2-4相互影响对水泥土强度影响的试验研究[J]. 岩土工程学报, 2009, 31(1): 72-76.
[HAN P J, BAI X H, ZHAO Y Q, et al. Experimental study on strength of cement soil under Mg2+ and SO2-4 interaction influence [J]. Chinese Journal of Geotechnical Engineering,2009,31(1): 72-76.(in Chinese)]
[10]宁宝宽, 陈四利, 丁梧秀, 等. 环境侵蚀下水泥土的强度及细观破裂过程分析[J]. 岩土力学, 2009, 30(8): 2215-2219.
[NING B K, CHEN S L, DING W X, et al. Analysis of meso-fracture process of cemented soil under environmental erosion [J]. Rock and Soil Mechanics, 2009, 30(8): 2215-2219. (in Chinese)]
[11]刘鑫, 洪宝宁, 陈艳丽, 等. 侵蚀环境下水泥土强度及微结构变化规律研究[J]. 武汉理工大学学报, 2010, 32(10): 11-15.
[LIU X, HONG B N, CHEN Y L, et al. Research on the shear strength and microstructure change regulation of cement-mixed soil under environmental erosion [J]. Journal of Wuhan University of Technology, 2010, 32(10): 11-15. (in Chinese)]
[12]刘泉声, 柳志平, 程勇, 等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学, 2013, 34(7): 1854-1860.
[LIU Q S, LIU Z P, CHENG Y, et al. Experimental study and equivalent analysis of cemented soil under corrosion environment [J]. Rock and Soil Mechanics, 2013, 34(7): 1854-1860. (in Chinese)]
[13]杨俊杰, 孙涛, 张玥宸, 等. 腐蚀性场地形成的水泥土的劣化研究[J]. 岩土工程学报, 2012, 34(1): 130-138.
[YANG J J, SUN T, ZHANG Y C, et al. Deterioration of soil cement stabilized in corrosive site [J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 130-138. (in Chinese)]
[14]涂鹏, 王星华. 海底隧道注浆材料强度劣化规律及使用寿命研究[J]. 水文地质工程地质, 2011, 38(1): 65-68.
[TU P, WANG X H. Strength deterioration and service life research on subsea tunnel grouting materials [J]. Hydrogeology & Engineering Geology, 2011, 38(1): 65-68.(in Chinese)]
[15]TASONG W A, WILD S, TILLEY R J. Mechanisms by which ground granulated blastfurnace slag prevents sulphate attack of lime-stabilised kaolinite [J]. Cement and Concrete Research, 1999, 29(7): 975-982.
[16]YU B W, DU Y J, JIN F, et al. Multiscale study of sodium sulfate soaking durability of low plastic clay stabilized by reactive magnesia-activated ground granulated blast-furnace slag [J]. Journal of Materials in Civil Engineering, 2016, 28(6): 04016016.
[17]JIANG N J, DU Y J, LIU K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack [J]. Applied Clay Science., 2018, 161: 70-75.
[18]林宗寿. 胶凝材料学[M]. 武汉: 武汉理工大学出版社, 2018.
[LIN Z S. Cementitiology material science[M]. Wuhan: Wuhan University of Technology Press, 2018.(in Chinese)]
[19]AHMED A, ISSA U H. Stability of soft clay soil stabilised with recycled gypsum in a wet environment [J]. Soils and Foundations, 2014, 54(3): 405-416.
[20]JHA A K, SIVAPULLAIAH P V. Physical and strength development in lime treated gypseous soil with fly ash—Micro-analyses [J]. Applied Clay Science, 2017, 145: 17-27.
[21]TALERO R, TRUSILEWICZ L, DELGADO A, et al. Comparative and semi-quantitative XRD analysis of Friedel’s salt originating from pozzolan and Portland cement [J]. Construction and Building Materials, 2011, 25(5):2370-2380.
[22]孙国文, 管学茂, 孙伟, 等. 水泥-矿渣体系对Cl-结合能力及机理研究[J]. 武汉理工大学学报, 2010, 32(7): 39-43.
[SUN G W, GUAN X M, SUN W, et al. Research on the binding capacity and mechanism of chloride ion based on cement-GGBS system [J]. Journal of Wuhan University of Technology,2010, 32(7): 39-43.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019-04-04; 修订日期: 2019-05-20
基金项目: 国家自然科学基金项目资助(41772332);湖北省技术创新专项重大项目资助(2017ACA090)
第一作者: 何俊(1977-),女,教授,主要从事环境岩土工程教学与研究工作。E-mail:hjunas@163.com
更新日期/Last Update: 2019-11-15