[1]陈鑫,张泽,李东庆.尺寸和加载速率对冻结水泥土单轴压缩影响[J].水文地质工程地质,2019,46(06):74-82.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.10]
 CHEN Xin,ZHANG Ze,LI Dongqing.Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil[J].Hydrogeology & Engineering Geology,2019,46(06):74-82.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.10]
点击复制

尺寸和加载速率对冻结水泥土单轴压缩影响()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
74-82
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Effect of size and loading rate on the uniaxial compression characteristics of frozen cement soil
文章编号:
1000-3665(2019)06-0074-09
作者:
陈鑫12张泽1李东庆1
1.中国科学院西北生态环境资源研究院,冻土工程国家重点实验室,甘肃 兰州730000;2.中国科学院大学,北京100049
Author(s):
CHEN Xin12 ZHANG Ze1 LI Dongqing1
1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu730000, China; 2. University of Chinese Academy of Sciences, Beijing100049, China
关键词:
水泥土尺寸效应加载速率抗压强度破坏应变
Keywords:
cement soil size effect loading rate compressive strength failure strain
分类号:
TU411.5
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.10
文献标志码:
A
摘要:
为揭示尺寸效应和加载速率效应对冻结改良土力学特性的影响规律,以冻结水泥改良土为研究对象,开展了不同尺寸与加载速率条件下的单轴压缩试验,通过分析试验数据,讨论了高径比和加载速率对试样强度与变形特性的影响。研究结果表明,高径比影响试样的应力-应变曲线类型及峰值后的变形特性。高径比增加,应力-应变曲线出现明显弹性屈服点,峰后脆性增强,试样破坏形式由劈裂破坏变为单一剪切破坏。试样的抗压强度、切线模量、起始屈服模量、破坏应变随高径比变化均可用抛物线进行拟合,综合考虑,推荐试验宜采用高径比为1.62~2.02的试件。在试验设定的温度和加载速率条件下冻结水泥土的单轴压缩应力-应变关系均为应变软化型。与冻土类似,冻结水泥土的抗压强度与起始屈服强度同样随温度的降低和加载速率的增加而增大。不同温度下冻结水泥土抗压强度与加载速率的关系可用幂函数表示。温度越低,起始屈服强度受加载速率影响越大。温度和加载速率对冻结水泥土切线模量也有较大影响,不同加载速率条件下切线模量与温度呈线性关系。冻结水泥土的破坏应变随温度的降低和加载速率的增加而增大,在1.94%~6.94%之间变化,不同加载速率条件下破坏应变与温度呈幂函数关系。
Abstract:
In order to reveal the influence law of the effect of size and loading rate on the mechanical properties of frozen modified soil, uniaxial compression tests with different sizes and loading rates are carried out on the frozen cement modified soil. The influence of height-diameter ratio and loading rate on the strength and deformation characteristics of the specimen is discussed by analyzing the test data. The results show that the high-diameter ratio affects the stress-strain curve type and the post-peak deformation characteristics of the sample. With the increasing high-diameter ratio, the stress-strain curve shows a significant elastic yield point, and the post-peak brittleness increases, and the failure mode of the sample changes from splitting failure to single shear failure. The compressive strength, tangent modulus, initial yield modulus and strain at failure of the specimen can be fitted by using a parabola with the change of height-diameter ratio. For the comprehensive consideration, the test specimen with high-diameter ratio of 1.62~2.02 should be used. Under the conditions of temperature and loading rate, the uniaxial compressive stress-strain relationship of the frozen cement soil is strain softening. The compressive strength and initial yield strength of the frozen cement soil, similar to that of the frozen soil, increase with the decreasing temperature and the increasing loading rate. The relationship between the compressive strength and loading rate of the frozen cement soil at different temperatures can be expressed by using a power function. The lower the temperature, the greater the influence of the loading rate on the initial yield strength. Temperature and loading rate also have a great influence on the tangential modulus of the frozen cement soil. The tangent modulus has a linear relationship with temperature under different loading rates. The failure strain of the frozen cement soil increases with the decreasing temperature and the increasing loading rate, which varies from 1.94% to 6.94%. Under different loading rates, the failure strain has a power function relationship with temperature.

参考文献/References:

[1]胡向东. 上海灰黄色粉砂水泥改良土冻胀融沉性质实验[J]. 煤炭学报, 2009, 34(3): 334-339.
[HU X D. Laboratory research on properties of frost heave and thaw settlement of cement-improved Shanghai’s grey-yellow silty sand[J]. Journal of China Coal Society, 2009, 34(3): 334-339.(in Chinese)]
[2]鲍俊安, 杨平, 王许诺. 水泥土冻胀特性试验研究[J]. 郑州大学学报(工学版), 2013, 34(1): 5-9.
[BAO J A, YANG P, WANG X N. Experimental study on frost heave properties of cement-improved soil[J]. Journal of Zhengzhou University (Engineering Science), 2013, 34(1): 5-9. (in Chinese)]
[3]马巍, 徐学祖, 张立新. 冻融循环对石灰粉土剪切强度特性的影响[J]. 岩土工程学报, 1999, 21(2): 158-160.
[MA W, XU X Z, ZHANG L X. Influence of frost and thaw cycles on shear strength of lime silt[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 158-160. (in Chinese)]
[4]王天亮, 刘建坤, 田亚护. 冻融作用下水泥及石灰改良土静力特性研究[J]. 岩土力学, 2011, 32(1): 193-198.
[WANG T L, LIU J K, TIAN Y H. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198. (in Chinese)]
[5]牛亚强, 王旭, 廖孟柯, 等. 冻结改良黄土三轴强度和变形特性试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 198-203.
[NIU Y Q, WANG X, LIAO M K, et al. Experimental study on triaxial strength and deformation characteristics of frozen-improved loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Sup2): 198-203. (in Chinese)]
[6]谭丽华. 水泥改良土冻胀融沉特性研究[D]. 上海: 同济大学, 2008.
[TAN L H. Investigation on properties of frost heave and thawing settlement of cement-improved soil[D]. Shanghai: Tongji University, 2008.(in Chinese)]
[7]储鹏. 冻结条件下水泥改良土力学特性试验研究[J]. 洛阳理工学院学报(自然科学版), 2017, 27(3): 9-11.
[CHU P. Test research on unconfined compressive strength of freezing cement soil[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2017, 27(3): 9-11. (in Chinese)]
[8]王许诺, 杨平, 鲍俊安, 等. 冻结水泥土无侧限抗压试验研究[J]. 水文地质工程地质, 2013, 40 (3): 79-83.
[WANG X N, YANG P, BAO J A, et al. Test research on unconfined compressive strength of freezing cement soil [J]. Hydrogeology & Engineering Geology, 2013, 40 (3): 79-83. (in Chinese)]
[9]杨圣奇, 苏承东, 徐卫亚. 岩石材料尺寸效应的试验和理论研究[J]. 工程力学, 2005, 22(4): 112-118.
[YANG S Q, SU C D, XU W Y. Experimental and theoretical study of size effect of rock material[J]. Engineering Mechanics, 2005, 22(4): 112-118. (in Chinese)]
[10]高旭, 晏鄂川, 崔学杰, 等. 应变速率对含砾滑带土抗剪强度影响研究[J]. 水文地质工程地质, 2016, 43(1): 94-98.
[ GAO X, YAN E C, CUI X J, et al.Influence of strain rate to the shear strength of conglomeratic sliding-zone soil[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 94-98. (in Chinese)]
[11]魏宝华,邓亚虹,孙璇,等.重塑黄土的加载速率效应研究[J]. 水文地质工程地质,2017,44(5):86-91.
[WEI B H, DENG Y H, SUN X, et al. A study of the loading rate effect on disturbed loess[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 86-91. (in Chinese)]
[12]陈甦, 彭建忠, 韩静云, 等. 水泥土强度的试件形状和尺寸效应试验研究[J]. 岩土工程学报, 2002, 24(5):580-583.
[CHEN S, PENG J Z, HAN J Y, et al. Experimental research on the shape and size effect of cement-stabilized soil specimen strength[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 580-583. (in Chinese)]
[13]周海龙,申向东,薛慧君,等.寒区水泥固化土力学性能影响因素分析[J].冰川冻土,2016,38(1):192-199.
[ZHOU H L, SHEN X D, XUE H J, et al. Analysis of the factors affecting the mechanical properties of cement concrete-stabilized soil in cold regions[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 192-199.(in Chinese)]
[14]李洪升, 朱元林, 刘增利. 冻土断裂韧度KIC的尺寸效应实验研究[J]. 冰川冻土, 1997, 19(4): 340-345.
[LI H S, ZHU Y L, LIU Z L. Experimental study on the effect of the sample size on fracture toughnees KIC of frozen soils [J]. Journal of Glaciology and Geocryology, 1997, 19(4): 340-345. (in Chinese)]
[15]李海鹏, 杨维好, 黄家会, 等. 试件形状对冻结粉土抗压强度影响的试验研究[J]. 冰川冻土, 2005, 27(6): 920-925.
[LI H P, YANG W H, HUANG J H, et al. An experimental study of the effect of specimen shape on compressive strength of frozen silt[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 920-925.(in Chinese)]
[16]栗晓林, 王红坚, 牛永红. 不同加载速率下冻结黏土的强度及破坏特性[J].岩土工程学报, 2017, 39(12):2335-2340.
[LI X L, WANG H J, NIU Y H. Strength and failure properties of frozen clay under varying loading rates[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12):2335-2340.(in Chinese)].
[17]陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7): 1046-1051.
[CHEN Y L, WANG M, XU S, et al. Tensile and compressive strength tests on artifical frozen soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1046-1051. (in Chinese)]
[18]高娟, 廖孟柯, 常丹, 等. 冻结砂土体积变形影响因素的敏感性分析[J]. 冰川冻土, 2018, 40(2): 346-354.
[GAO J, LIAO M K, CHANG D, et al. Sensitivity analysis of the factors affecting the volumetric deformation of frozen sandy soil[J]. Journal of Glaciology and Geocryology, 2018, 40( 2): 346-354.(in Chinese)]
[19]杜海民, 马巍, 张淑娟, 等. 应变率与含水率对冻土单轴压缩特性影响研究[J]. 岩土力学, 2016, 37(5): 1373-1379.
[DU H M, MA W, ZHANG S J, et al. Effects of strain rate and water content on uniaxial compressive characteristics of frozen soil[J]. Rock and Soil Mechanics, 2016, 37(5): 1373-1379. (in Chinese)]
[20]李海鹏, 林传年, 张俊兵, 等. 饱和冻结黏土在常应变率下的单轴抗压强度[J]. 岩土工程学报, 2004, 26(1): 105-109.
[LI H P, LIN C N, ZHANG J B, et al. Uniaxial compressive strength of saturated frozen clay at constant strain rate[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 105-109. (in Chinese)]
[21]马巍, 王大雁.冻土力学[M]. 北京:科学出版社, 2014:44.
[MA W, WANG D Y. Frozen soil mechanics[M]. Beijing: Science Press, 2014: 44. (in Chinese)]
[22]朱元林, 张家懿, 彭万巍, 等. 冻土的单轴压缩本构关系[J]. 冰川冻土, 1992, 14(3): 210-217.
[ZHU Y L, ZHANG J Y, PENG W W, et al. Constitutive relations of frozen soil in uniaxial compression[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 210-217. (in Chinese)]
[23]陈瑜, 黄永恒, 曹平, 等. 不同髙径比时软岩强度与变形尺寸效应研究[J]. 中南大学学报, 2010, 41(3): 1073-1078.
[CHEN Y, HUANG Y H, CAO P, et al. Size effect experimental study of strength and deformation in different height-to-diameter ratio soft rocks[J]. Journal of Central South University, 2010, 41(3): 1073-1078. (in Chinese)]
[24]李海鹏, 黄家会, 朱元林, 等. 加载方向对层状构造冻结粉土抗压强度的影响[J]. 中国矿业大学学报, 2007, 36(5): 573-577.
[LI H P, HUANG J H, ZHU Y L, et al. Influencesive of loading directions on compressive strength of frozen silt with layered structures[J]. Journal of China University of Mining & Technology, 2007, 36(5): 573-577.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2019-04-22; 修订日期: 2019-06-06
基金项目: 国家自然科学基金项目资助(41771078);冻土工程国家重点实验室自主研究项目资助(SKLFSE-ZT-19)
第一作者: 陈鑫(1990-),男,博士研究生,从事冻土物理力学性质研究。E-mail:1273078175@qq.com
通讯作者: 张泽(1981-),男,副研究员,主要从事寒区工程与环境研究。E-mail:zhangze@lzb.ac.cn
更新日期/Last Update: 2019-11-15