[1]袁博,祝介旺.滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例[J].水文地质工程地质,2019,46(06):57-66.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.08]
 YUAN Bo,ZHU Jiewang.Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway[J].Hydrogeology & Engineering Geology,2019,46(06):57-66.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.08]
点击复制

滚石冲击下棚洞破坏动力响应分析及改进对策——以川藏公路(安久拉山南麓)门式棚洞为例()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
57-66
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Dynamic response analyses and improvement countermeasures of shed-tunnel destruction under rolling stone impact: a case study of the shed-tunnel in the southern foot of the Anjiula Mountain on the Sichuan-Tibet Highway
文章编号:
1000-3665(2019)06-0057-10
作者:
袁博祝介旺
山东建筑大学土木工程学院,山东 济南250000
Author(s):
YUAN BoZHU Jiewang
School of Civil Engineering,Shandong Jianzhu University,Jinan,Shandong250000,China
关键词:
棚洞滚石动力响应优化改造
Keywords:
shed-tunnel rolling rock dynamic response optimization and transformation
分类号:
U417.1;P642.21;TU457
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.08
文献标志码:
A
摘要:
位于川藏公路安久拉山南麓的门式防滚石棚洞,在路边高陡边坡滚石冲击下已严重损坏,滚石冲击产生的巨大冲击力导致棚洞纵梁、顶板、梁柱连接处等应力集中部位发生破坏,且滚石冲击后大量堆积在棚顶成为永久荷载。在现场通过卷尺测得棚洞结构尺寸,使用测距仪测得棚顶堆积滚石的最大粒径D=1 m,滚石的最大下落高度H=20 m。为解决门式棚洞存在的安全问题,提出在棚顶设置凹槽并在槽内铺设厚度为10~70 cm、向外坡度为6°的橡胶垫层对原结构进行改造。借助LS-DYNA动力有限元软件按实际尺寸分别建立改进前后的棚洞有限元模型,并模拟改进前后棚洞在滚石冲击最不利工况(H=20 m,D=1 m)下棚洞结构的动力响应,通过数值模拟结果的对比来验证改进后棚洞的受力性能,研究结果发现:改进后的棚洞相对于原棚洞,最大等效应力减小72%、棚顶最大挠度减小45%、落石冲击力减小62%、滚石堆积在棚洞顶板的概率显著降低,说明在棚顶设置起坡橡胶垫层的措施可有效解决目前门式棚洞存在的安全问题。
Abstract:
The door-type anti-rolling stone shed-tunnel located at the southern foot of the Anjiula Mountain of the Sichuan-Tibet Highway was seriously damaged under the impact of rolling rocks on the high and steep side slope of the roadside. The huge impact force caused by rolling rocks led to the destruction of the stress concentrated parts of the longitudinal beam, roof and beam-column connection of the shed-tunnel, and after the impact of rolling rocks, a large number of rocks accumulated on the roof of the shed and became permanent loads. The structural dimensions of the shed-tunnel were measured with the tape gauge, and the maximum diameter D=1 m and the maximum falling height H=20 m of the accumulated rolling stones on the roof were measured with a range finder. In order to solve the safety problems of the door-type shed-tunnel, the original structure was reformed by setting grooves on the roof and laying rubber cushion with a thickness of 10-70 cm in the groove and an outward slope of 6 degrees. With the help of LS-DYNA dynamic finite element software, the finite element models of the improved shed-tunnel are established according to the actual size, and the dynamic response of the shed-tunnel under the most disadvantageous conditions (H=20 m, D=1 m) is simulated. The stress performance of the improved shed-tunnel is verified by comparing the numerical simulation results. It is found that the maximum equivalent stress decreases by 72%, the maximum deflection of the roof decreases by 45%, the impact force of falling rocks decreases by 62%, and the probability of rolling rocks accumulating on the roof of the shed-tunnel decreases significantly. The results indicate that the measures of installing rubber cushion on the roof can effectively solve the safety problems existing in the door-type shed-tunnel.

参考文献/References:

[1]朱平一,何子文,汪阳春,等.川藏公路典型山地灾害研究[M]. 成都:成都科技大学出版社,1999.
[ZHU P Y,HE Z W,WANG Y C,et al. Study on typical mountain hazards of Sichuan-Tibet highway[M].Chengdu: Chengdu University of Science and Technology Press,1999.(in Chinese) ]
[2]杨志法,尚彦军,张路青,等.川藏公路地质灾害及其防治对策研究—以八宿至林芝段为例[M]. 北京:科学出版社,2006.
[YANG Z F,SHANG Y J,ZHANG L Q,et al. Study on geological hazards and prevention measures of Sichuan-Tibet highway:Take Basu-Linzhi section as an example [M]. Beijing: Science Press,2006. (in Chinese) ]
[3]刘成清,陈林雅,陈驰,等. 柔性钢棚洞结构在落石灾害防治中的应用研究[J]. 西南交通大学学报,2015,50(1):111-117.
[LIU C Q,CHEN L Y,CHEN C,et al. Application of flexible shed-tunnel structure to rock-fall hazard prevention[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 111-117.(in Chinese)]http://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT201501017&dbname=CJFD&dbcode=CJFQ]
[4]张路青,杨志法,许兵. 滚石与滚石灾害[J]. 工程地质学报,2004,12(3):225-231.
[ZHANG L Q,YANG Z F,XU B. Rock Falls and rock fall hazards[J]. Journal of Engineering Geology, 2004, 12(3): 225-231.(in Chinese)]http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GCDZ200403000&dbname=CJFD&dbcode=CJFQ]
[5]沈均, 何思明, 吴永. 滚石灾害研究现状及发展趋势[J]. 灾害学, 2008, 23(4): 122-125.
[SHEN J, HE S M, WU Y. Present research status and development trend of rockfall hazards[J]. Journal of Catastrophology, 2008, 23(4): 122-1258.(in Chinese)]http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ZHXU200804027&dbname=CJFD&dbcode=CJFQ
[6]叶四桥, 陈洪凯, 唐红梅. 落石冲击力计算方法[J]. 中国铁道科学, 2010, 31(6): 56-62.
[YE S Q, CHEN H K, TANG H M. The calculation method for the impact force of the rockfall[J]. China Railway Science, 2010, 31(6): 56-62.(in Chinese)]
[7]叶四桥, 陈洪凯, 唐红梅. 落石冲击力计算方法的比较研究[J]. 水文地质工程地质, 2010, 37(2): 59-64.
[YE S Q, CHEN H K, TANG H M. Comparative research on impact force calculation methods for rockfalls[J]. Hydrogeology & Engineering Geology, 2010, 37(2): 59-64.(in Chinese)]
[8]何思明. 滚石对防护结构的冲击压力计算[J]. 工程力学, 2010, 27(9): 175-180.
[HE S M. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics, 2010, 27(9): 175-180.(in Chinese)]
[9]何思明,吴永,杨雪莲. 滚石坡面冲击回弹规律研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2793-2798.
[HE S M, WU Y,YANG X L. Study of rock-fall motion on slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup 1): 2793-2798.(in Chinese)]
[10]何思明, 吴永, 李新坡. 滚石冲击碰撞恢复系数研究[J]. 岩土力学, 2009, 30(3): 623-627.
[HE S M, WU Y, LI X P. Research on restitution coefficient of rock fall[J]. Rock and Soil Mechanics, 2009, 30(3): 623-627.(in Chinese)]
[11]刘丹, 叶四桥, 杨威. 落石水平运动距离影响因素的模型试验研究[J]. 水文地质工程地质, 2013, 40(6): 112-116.
[LIU D, YE S Q, YANG W. Model test study of influence factors of horizontal movement of rockfalls[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 112-116.(in Chinese)]
[12]赵晓彦, 胡厚田, 刘涌江. 大型高速滑坡滑动过程中碰撞特性的试验[J]. 水文地质工程地质, 2003, 30(6): 85-88. Collision-experiment research of large high-speed rockslide[J]. Hydrogeology & Engineering Geology, 2003, 30(6): 85-88.(in Chinese)]
[13]汪精河, 周晓军, 王爽,等. 落石冲击下隧道明洞耗能措施研究[J]. 公路交通科技, 2015, 32(9): 103-108.
[WANG J H, ZHOU X J, WANG S, et al. Study on energy dissipation measures for open cut tunnel under rockfall impact[J]. Journal of Highway and Transportation Research and Development, 2015, 32(9): 103-108.(in Chinese)]
[14]熊磊. 落石冲击作用下棚洞顶缓冲垫层优化设置研究[D]. 重庆: 重庆交通大学, 2016.
[XIONG L. Study on the load distribution regularity of double-row drilled anti-slide piles[D]. Chongqing: Chongqing Jiaotong University, 2016.(in Chinese)]
[15]李正辉. 落石冲击下拱形明洞落石冲击荷载及荷载效应研究[D]. 成都: 西南交通大学, 2017.
[LI Z H. Research on rock-fall impaction loads and loads effects of arch open tunnel under the impact of rock[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)]
[16]刘元雪, 谢锋, 蒋树屏,等. 棚洞结构洞形优化计算分析[J]. 岩土力学, 2007, 28(增刊1): 490-492.
[LIU Y X, XIE F, JIANG S P, et al. Numerical analysis of the shed-tunnel structrue on the tunnel shape optimizing[J]. Rock and Soil Mechanics, 2007, 28(S1): 490-492.(in Chinese)]
[18]张群利, 王全才, 吴清,等. 不同结构类型棚洞的抗冲击性能研究[J]. 振动与冲击, 2015, 34(3): 72-76.
[ZHANG Q L, WANG Q C, WU Q, et al. Anti-impact performances of different kinds of shed-tunnel structures[J]. Journal of Vibration and Shock, 2015, 34(3): 72-76.(in Chinese)]
[19]陈奇珠, 董翌为. 赤平投影法分析岩质边坡稳定性的图解模板[J]. 西北水电, 2013(4): 13-16.
[CHEN Q Z, DONG Y W. Graphic template for analysis of rock slope stability by stereographic projection method[J]. Northwest Hydropower, 2013(4): 13-16.(in Chinese)]
[20]王涛. 落石冲击下拱形护桥明洞受力机理研究[D]. 成都: 西南交通大学, 2018.
[WANG T. Study on stress mechanism of arched protection shed of bridge under rock-fall impaction[D]. Chengdu: Southwest Jiaotong University, 2018.(in Chinese)]
[21]何思明, 沈均, 吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学, 2011, 32(3): 781-788.
[HE S M, SHEN J, WU Y. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3): 781-788.(in Chinese)]
[22]郭江, 王全才, 张群利,等. 落石冲击荷载下框架门式棚洞结构优化探讨[J]. 水文地质工程地质, 2014, 41(6): 92-97.
[GUO J, WANG Q C, ZHANG Q L, et al. Exploration of structural optimization for the frame-type shed-tunnel under the impact of load of rock-fall[J]. Hydrogeology & Engineering Geology, 2014, 41(6): 92-97.(in Chinese)]

相似文献/References:

[1]韩俊艳,陈红旗,杜修力,等.典型斜坡滚石运动的理论计算研究[J].水文地质工程地质,2010,37(4):92.
 HAN Jun-yan,CHEN Hong-qi,Du Xiu-Li.Theoretical studies of the movement of a typical slope rolling stone[J].Hydrogeology & Engineering Geology,2010,37(06):92.

备注/Memo

备注/Memo:
收稿日期: 2019-03-28; 修订日期: 2019-05-29
第一作者: 袁博(1995-),男,硕士研究生,主要从事地质灾害与防护工程的研究。E-mail:492932940@qq.com
通讯作者: 祝介旺(1965-),男,博士,副教授,主要从事岩土(体)工程加固与地质灾害防治等教学与研究。E-mail:zhujiewang@163.com
更新日期/Last Update: 2019-11-15