[1]李修磊,李起伟,李倩.基于断裂及高温损伤的岩石蠕变模型研究[J].水文地质工程地质,2019,46(06):46-56.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.07]
 LI Xiulei,LI Qiwei,LI Qian.A study of the creep model of rock considering fractures and thermal damage[J].Hydrogeology & Engineering Geology,2019,46(06):46-56.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.07]
点击复制

基于断裂及高温损伤的岩石蠕变模型研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
46-56
栏目:
工 程 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
A study of the creep model of rock considering fractures and thermal damage
文章编号:
1000-3665(2019)06-0046-11
作者:
李修磊1李起伟12李倩3
1.重庆交通大学交通运输学院,重庆400074;2.中交第一公路勘察设计研究院有限公司,陕西 西安710075;3.四川大学锦江学院,四川 眉山620860
Author(s):
LI Xiulei1 LI Qiwei12 LI Qian3
1.College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing400074, China; 2.CCCC First Highway Consultants Co., LTD, Xi’an, Shaanxi710075, China; 3.Sichuan University Jinjiang College, Meishan, Sichuan620860,China
关键词:
岩石力学蠕变模型热-力耦合临界损伤应力本构关系
Keywords:
rock mechanics creep model thermal-mechanical coupling critical damage stress constitutive relation
分类号:
TU452
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.07
文献标志码:
A
摘要:
为了反映热-力耦合作用下岩石蠕变变形的全过程,依据断裂力学原理提出了岩石裂纹扩展的临界损伤应力和一个新的可描述岩石在稳态蠕变阶段与临界损伤应力相关的非线性黏性分量,在传统西原模型和Burgers模型的基础上,将指数形式的损伤变量、临界损伤应力以及与其有关的非线性黏性分量引入到流变微分方程,通过叠加原理推导了考虑温度效应的单轴和三轴压缩条件下岩石的流变本构关系,建立了岩石的热-力耦合损伤蠕变本构模型。利用不同温度、不同应力条件下花岗岩的三轴蠕变试验曲线和本文蠕变模型的计算曲线进行比较,结果表明本文蠕变模型能够较好地模拟岩石在初始瞬态、稳态和加速蠕变阶段全过程的变形规律,验证了所建模型的有效性和合理性。该模型为分析高温、高应力环境下岩石工程的长期变形和稳定情况提供了理论依据。
Abstract:
In order to reflect the whole creep deformation process of rock under the coupling thermal-mechanical action, the critical damage stress is derived on the basis of fracture mechanics principle and a new non-linear viscous component correlated to the critical damage stress is proposed to describe the rock creep deformation in the steady stage. The exponential damage variable, critical damage and its related non-linear viscous component are introduced into the rheological differential equation based on the raditional Nishihara creep model and Burgers mode. By using the superposition principle, the rheological constitutive relation of rock is derived under the uniaxial and triaxial compression conditions considering the effect of temperature. The coupling thermal-mechanical damage creep model is established for rock. Comparison is presented between the calculations of this damage creep model and test data of granite under the conditions of different temperatures and stresses. The results show that this damage creep model can well simulate the creep deformation characteristics of rock in the initial creep stage, the steady-state creep stage and the accelerating creep stage, which verifies the validity and rationality of the damage creep model developed in this paper. This model may provide an important theoretical basis for analyzing the long-term stability of rock engineering under the conditions of high temperature and stress.

参考文献/References:

[1]钱七虎, 李树忱. 深部岩体工程围岩分区破裂化现象研究综述[J]. 岩石力学与工程学报, 2008, 27(6):1278- 1284.
[QIAN Q H, LI S C. A review of research on zonal disintegration phenomenon in deep rock mass engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1278-1284. (in Chinese)]
[2]何满潮, 钱七虎. 深部岩体力学基础[M]. 北京:科学出版社, 2010.
[HE M C, QIAN Q H. The basis of deep rock mechanics [M]. Beijing: Science Press, 2010. (in Chinese)]
[3]孙钧. 岩石流变力学及其工程应用研究的若干进展[J]. 岩石力学与工程学报, 2007, 26(6):1081-1106.
[SUN J. Rock rheological mechanics and its advance in engineering applications [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6):1081-1106.(in Chinese)]
[4]赵阳升, 郤保平, 万志军, 等. 高温高压下花岗岩中钻孔变形失稳临界条件研究[J]. 岩石力学与工程学报, 2009, 28(5):865-874.
[ZHAO Y S, XI B P, WAN Z J, et al. Study of Critical condition of borehole instability in granite under high temperature and high pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5):865-874. (in Chinese)]
[5]CHOPRA P N. High-temperature transient creep in olivine rocks[J]. Tectonophysics, 1997, 279(1/2/3/4):93-111.
[6]KINOSHITA N, INADA Y. Effects of High temperature on strength, deformation, thermal properties and creep of rocks[J]. Journal of the Society of Materials Science Japan, 2006, 55(5):489-494.
[7]CHEN L, WANG C P, LIU J F, et al. Effects of temperature and stress on the time-dependent behavior of Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93:316-323.
[8]刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000, 19(4):408-411.
[LIU Q S, XU X C. Damage analysis of brittle rock at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(4): 408-411. (in Chinese)]
[9]张强勇, 张龙云, 向文,等. 考虑温度效应的片麻状花岗岩三轴蠕变试验研究[J]. 岩土力学, 2017, 38(9):2507 -2514.
[ZHANG Q Y, ZHANG L Y, XIANG W, et al. Triaxial creep test of gneissic granite considering thermal effect [J]. Rock and Soil Mechanics, 2017, 38(9): 2507-2514. (in Chinese)]
[10]张宁, 赵阳升, 万志军,等. 高温作用下花岗岩三轴蠕变特征的实验研究[J]. 岩土工程学报, 2009, 31(8): 1309-1313.
[ZHANG N, ZHAO Y S, WAN Z J, et al. Experimental study on triaxial creep properties of granite under high temperature [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8):1309-1313. (in Chinese))
[11]陈亮, 刘建锋, 王春萍,等. 不同温度及应力状态下北山花岗岩蠕变特征研究[J]. 岩石力学与工程学报, 2015, 34(6):1228-1235.
(CHEN L, LIU J F, WANG C P, et al. Creeping behavior of Beishan granite under different temperatures and stress conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1228-1235. (in Chinese))
[12]CHEN L, WANG C P, LIU J F, et al. A damage-mechanism-based creep model considering temperature effect in granite[J]. Mechanics Research Communications, 2014, 56(2):76-82.
[13]唐皓, 王东坡, 裴向军, 等. 基于分段模拟的岩石蠕变模型[J]. 水文地质工程地质, 2017, 44(1):41-47.
[TANG H, WANG D P, PEI X J, et al. Creep model of rock based on piecewise simulation [J]. Hydrogeology & Engineering Geology, 2017, 44(1):41-47. (in Chinese)]
[14]曹丽丽, 浦海, 仇陪涛, 等. 基于函数阶微积分的泥岩高温蠕变特性分析[J]. 采矿与安全工程学报, 2017, 34(1):148-154.
[CAO L L, PU H, QIU P T, et al. Analyzing creeping properties of mudstone at high temperature based on variable-order fractional calculus [J]. Journal of Mining & Safety Engineering, 2017, 34(1):148-154.(in Chinese)]
[15]胡其志, 冯夏庭, 周辉. 考虑温度损伤的盐岩蠕变本构关系研究[J]. 岩土力学, 2009, 30(8):2245-2248.
[HU Q Z, FENG X T, ZHOU H. Study of creep model of rock salt with thermal damage considered [J]. Rock and Soil Mechanics, 2009, 30(8):2245-2248. (in Chinese)]
[16]王春萍, 陈亮, 梁家玮, 等. 考虑温度影响的花岗岩蠕变全过程本构模型[J]. 岩土力学, 2014, 35(9):2493- 2500.
[WANG C P, CHEN L, LIANG J W, et al. Creep constitutive model for full creep process of granite considering thermal effect[J]. Rock and Soil Mechanics, 2014, 35(9):2493-2500. (in Chinese)]
[17]张强勇, 向文, 江力宇, 等. 片麻状花岗岩热黏弹塑性损伤蠕变模型及应用研究[J]. 土木工程学报, 2017, 50(8):88-97.
[ZHANG Q Y, XIANG W, JIANG L Y, et al. A thermal-visco- elastoplastic damage creep model for gneissic granite and its practical application [J]. China Civil Engineering Journal, 2017, 50(8): 88-97. (in Chinese)]
[18]梁玉雷, 冯夏庭, 周辉, 等. 温度周期作用下大理岩三轴蠕变试验与理论模型研究[J]. 岩土力学, 2010, 31(10):3107-3112.
[LIANG Y L, FENG X T, ZHOU H, et al. Research on triaxial creep experiment and theoretical model of marble under cyclic temperatures [J]. Rock and Soil Mechanics, 2010, 31(10):3107-3112. (in Chinese)]
[19]XU T, ZHOU G L, HEAP M J, et al. The influence of temperature on time-dependent deformation and failure in granite: A mesoscale modeling approach[J]. Rock Mechanics and Rock Engineering, 2017, 50(9):2345-2364.
[20]李世愚, 和泰名, 尹相础. 岩石断裂力学[M]. 北京: 科学出版社, 2016.
[LI S Y, HE T M, YIN X C. Rock fracture mechanics [M]. Beijing: Science Press, 2016. (in Chinese)]
[21]LIU H Z, XIE H Q, HE J D, et al. Nonlinear creep damage constitutive model for soft rocks[J]. Mechanics of Time-Dependent Materials, 2017, 21(1):73-96.
[22]TAKEMURA T, ODA M, KIRAI H, et al. Microstructural based time-dependent failure mechanism and its relation to geological background[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53:76-85.
[23]LIN Q X, LIU Y M, THAM L G, et al. Time-dependent strength degradation of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(7):1103-1114.
[24]HOU Z M. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5):725-738.
[25]LI X, CAO W G, SU Y H. A statistical damage constitutive model for softening behavior of rocks[J]. Engineering Geology, 2012, 143/144:1-17.
[26]陈文玲, 赵法锁, 弓虎军. 三轴蠕变试验中云母石英片岩蠕变参数的研究[J]. 岩石力学与工程学报, 2011, 30(增刊1):2810-2816.
[CHEN W L, ZHAO F S, GONG H J. Study of creep parameters of mica-quartzose schist during triaxial creep test [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 1):2810-2816. (in Chinese)]
[27]宋飞, 赵法锁, 卢全中. 石膏角砾岩流变特性及流变模型研究[J]. 岩石力学与工程学报, 2005, 24(15):2659- 2664.
[SONG F, ZHAO F S, LU Q Z. Study on rheological properties and model for gypsum breccias[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15):2659-2664. (in Chinese)]
[28]YANG S Q, CHENG L. Non-stationary and nonlinear visco-elastic shear creep model for shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6):1011-1020.
[29]AYDAN , ITO T, ZEBAY U, et al. ISRM suggested methods for determining the creep characteristics of rock[J]. Rock Mechanics and Rock Engineering, 2014, 47(1):275-290.
[30]夏才初, 许崇帮, 王晓东,等. 统一流变力学模型参数的确定方法[J]. 岩石力学与工程学报, 2009, 28(2):425-425.
[XIA C C, XU C B, WANG X D, et al. Method for parameters determination with unified rheological mechanical model [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2):425-425.(in Chinese)]
[31]WANG J A, LI D Z, SHANG X C. Creep failure of roof stratum above mined-out area[J]. Rock Mechanics and Rock Engineering, 2012, 45(4):533-546.

相似文献/References:

[1]何利军,孔令伟,张先伟,等.湛江软粘土蠕变特性及经验模型[J].水文地质工程地质,2011,38(1):59.
 HE Li-jun,KONG Ling-wei,ZHANG Xian-wei,et al.Creep properties and empirical model of soft clay in Zhanjiang[J].Hydrogeology & Engineering Geology,2011,38(06):59.
[2]黄达,黄润秋.自然地应力场对含断层地下洞室围岩稳定性影响规律[J].水文地质工程地质,2009,36(3):71.
 HUANG Da,HUNAG Run-qiu.Impact of field stress on stability of underground openings containing a fault[J].Hydrogeology & Engineering Geology,2009,36(06):71.

备注/Memo

备注/Memo:
收稿日期: 2019-03-31; 修订日期: 2019-05-20
基金项目: 中国博士后科学基金项目资助(2018M633627XB)
第一作者: 李修磊(1986-),男,副教授,博士后,主要从事岩土力学研究。E-mail: hellolixiulei@163.com
通讯作者: 李倩(1986-),女,讲师,硕士,主要从事岩土工程研究。E-mail:13499159999@qq.com
更新日期/Last Update: 2019-11-15