[1]王严,胡卸文,杨瀛,等.火烧迹地土壤斥水性和渗透性变化特性[J].水文地质工程地质,2019,46(06):40-45.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.06]
 WANG Yan,HU Xiewen,YANGYing,et al.Research on the change in soil water repellency and permeability in burned areas[J].Hydrogeology & Engineering Geology,2019,46(06):40-45.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.06]
点击复制

火烧迹地土壤斥水性和渗透性变化特性()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
40-45
栏目:
水 文 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Research on the change in soil water repellency and permeability in burned areas
文章编号:
1000-3665(2019)06-0040-06
作者:
王严1胡卸文12杨瀛1于振江1曹希超1
1.西南交通大学地球科学与环境工程学院,四川 成都610031;2.西南交通大学高速铁路运营安全空间信息技术国家地方联合工程实验室,四川 成都610031
Author(s):
WANG Yan1HU Xiewen12YANGYing1YU Zhenjiang1CAO Xichao1
1.Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu, Sichuan610031, China; 2.State-Province Joint Engineering Laboratory of Spatial Information Technology for High-Speed Railway Safety, Southwest Jiaotong University, Chengdu, Sichuan610031, China
关键词:
林火烈度火烧迹地斥水性饱和导水率吸渗率
Keywords:
fire intensity burned area water repellency saturated hydraulic conductivity sorptivity
分类号:
P642.11
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.06
文献标志码:
A
摘要:
林火会造成火烧迹地土壤斥水性增强及渗透性降低,导致降雨期间流域内地表产流率激增。在一定条件下,尤其是地形陡峭的高海拔山区,地表产流激增一般是泥石流灾害发生的重要诱因。然而,对于高海拔山区火烧迹地土壤斥水性和渗透性变化特征的研究相对缺乏。以海拔高程3029~4474 m的四川省雅江县恶古乡火烧迹地为研究对象,通过现场水滴入渗试验和圆盘入渗试验,探究斥水性强度分布及其与土壤入渗参数之间的内在联系。结果显示:土壤斥水性强度分布具备较大的空间异质性,林火对斥水性的影响深度在轻度火烧区为2 cm,在中度和严重火烧区为3 cm;研究区土壤渗透能力与斥水性强度呈反比,饱和导水率和吸渗率与水滴入渗时间之间遵循幂函数分布,其变异系数与火烈度呈正比,且严重火烧区部分土壤由于斥水性被高温破坏造成饱和导水率增大;斥水性土壤相较于亲水性土壤出现明显的入渗延迟现象。研究结果丰富了高海拔山区火烧迹地水文特征的研究,为揭示火烧迹地泥石流坡面物源起动机理提供理论依据。
Abstract:
Forest fire always results in the newly occurrence (or enhancement) of soil water repellency (SWR), and subsequent reduction in soil infiltration. It dramatically increases the surface runoff rate of a drainage basin. Under certain situation, especially the mountain area with high altitude and steep terrain, augmented surface runoff usually infiltrates the generation of debris flows. But little is known about the distribution of SWR and change in soil permeability in areas with high altitude. Based on the burned area with altitude ranging from 3029 to 4474 m in the Egu village of Yajiang county in Sichuan province, a set of water drop penetration tests and disk infiltration measurements are conducted to study the fire influence on distribution of the severity of SWR and soil permeability. The results indicate that great spatial heterogeneity of Hydrophobic strength of soil exists, and the influence depth of fire impact on SWR is up to 2 cm in the slightly burned area and 3 cm in the moderately and highly burned area. Soil permeability is inversely linked to the severity of water repellency, and the relationship between water drop penetration time and sorptivity and hydraulic conductivity of soil fallow the law of power function. The coefficient of variation in infiltration parameters increases with fire intensity, and part of the severely burned soil loses water repellency due to high temperature in fire and results in increase of saturated hydraulic conductivity. In contrast to hydrophilic soil, an obviously delay in infiltration is found find in the hydrophobic soil. The results of this work enrich the study of hydrological feature in burned areas and can provide the theoretical basis for the motivation of surface material in debris flow generation.

参考文献/References:

[1]BADIA-VILLAS D, GONZONZLEZ-PEREZ J A, AZNAR J M, et al. Changes in water repellency, aggregation and organic matter of a mollic horizon burned in laboratory: Soil depth affected by fire[J]. Geoderma, 2014, 213: 400-407.
[2]DEBANO L F, SAVAGE S M, HAMILTON D A. The transfer of heat and hydrophobic substances during burning[J]. Soil Science Society of America Journal, 1976, 40(5): 779-782.
[3]DOERR S H, DOUGLAS P, EVANS R C, et al. Effects of heating and post-heating equilibration times on soil water repellency[J]. Soil Research, 2005, 43(3): 261-267.
[4]任云,胡卸文,王严,等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018, 45(6): 150-156.
[REN Y, HU X WE, WANG Y, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 150-156. (in Chinese)]
[5]王腾飞,姚磊华,陈爱华. 暴雨条件下麻柳沟坡面泥石流形成过程试验研究[J]. 水文地质工程地质. 2014, 41(4): 119-124.
[WANG T F, YAO L H, CHEN A H. Model test study of the Maliugou debris flow under rainstorm[J]. Hydrogeology & Engineering Geology, 2014, 41(4): 119-124.(in Chinese)]
[6]闵雷雷,于静洁. 土壤斥水性及其对坡面产流的影响研究进展[J]. 地理科学进展, 2010, 29(7): 855-860.
[MIN L L, YU J J. Progress in the Research of Soil Water Repellency and Its Influences on Overland Flow Generation[J]. Progress in Geography, 2010, 29(7):855-860.(in Chinese)]
[7]刘立超,杨昊天,李新荣,等. 土壤斥水性及其生态水文效应研究进展[J]. 地球科学进展, 2011, 26(9): 926-932.
[LIU L C, YANG H T, LI X R, et al. The Advances in soil water repellency and its eco-hydorological effects[J]. Advances in Earth Science, 2011, 26(9): 926-932.(in Chinese)]
[8]GORDILLO RIVERO A J, GARCIA MORENO J, JORDAN A, et al. Fire severity and surface rock fragments cause patchy distribution of soil water repellency and infiltration rates after burning[J]. Hydrological Processes, 2015, 28(24): 5832-5843.
[9]刘发林,张思玉. 森林火灾对马尾松次生林土壤斥水性的影响[J]. 中南林业科技大学学报, 2009, 29(4): 37-41.
[LIU F L, ZHANG S Y. Influences of Fire disturbance on the water repellency of pinus massoniana soil[J]. Journal of Central South University of Forestry& Technology, 2009, 29(4): 37-41.(in Chinese)]
[10]DOERR S H, SHAKESBY R A, MACDONALD L H. Soil water repellency: A key factor in post-fire erosion[C] //Fire effects on soils and restoration strategies, Cerda A, Robichaud P R, edited. Enfield: Science Publishers, 2009: 197-223.
[11]BEATTY S M, SMITH J E. Dynamic soil water repellency and infiltration in post-wildfire soils[J]. Geoderma, 2013, 192: 160-172.
[12]WALLIS M G, HORNE D J, MCAULIFFE K W. A study of water repellency and its amelioration in a yellow-brown sand. 1. Severity of water repellency and the effects of wetting and abrasion[J]. New Zealand Journal of Agricultural Research, 1990, 33(1): 145-150.
[13]Debano L F, Mann L D, Hamilton D A. Translocation of hydrophobic substances into soil by burning organic litter[J]. Soil Science Society of America Journal, 1970, 34(1): 130-133.
[14]MOODY J A, KINNER D A, UBEDA X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency[J]. Journal of Hydrology, 2009, 379(3/4): 291-303.
[15]KEY C H, BENSON N C. LANDSCAPE assessment (LA) sampling and analysis methods[C]//FIREMON: Fire Effects Monitoring and Inventory System, Lutes D C edit, Rocky Mountain Research StationRMRS-GTR-164-CD, 2006.
[16]张中三,周启友,卢德宝,等. 基于电法的双环入渗过程监测[J]. 水文地质工程地质, 2016, 43(4): 113-117.
[ZHANG Z S, ZHOU Q Y, LU D B, et al. The process monitoring of the double-ring infiltration using the electrical method[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 113-117. (in Chinese)]
[17]FATEHNIA M, TAWFIQ K, ABICHOU T. Comparison of the methods of hydraulic conductivity estimation from mini disk infiltrometer[J]. Electronic Journal of Geotechnical Engineering, 2014, 19(11): 1047-1063.
[18]DEBANO L F. Water repellent soils: A state-of-the-art, General Technical Report, PSW-46[R]. California: Pacific Southwest Forest and Range Experiment Station PSW-46, 1981.
[19]ROBICHAUD P R, WAGENBRENNER J W, PIERSON F B, et al. Infiltration and interrill erosion rates after a wildfire in western Montana, USA[J]. Catena, 2016, 142: 77-88.
[20]WIETING C, EBEL B A, SINGHA K. Quantifying the effects of wildfire on changes in soil properties bysurface burning of soils from the Boulder Creek Critical Zone Observatory[J]. Journal of Hydrology: Regional Studies, 2017, 13: 43-57.
[21]ZHANG N, RENDUO. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer[J]. Soil Science Society of America Journal, 1997, 61(4): 1024-1030.
[22]Savage S M. Mechanism of fire-induced water repellency in soil[J]. Soil Science Society of America Journal, 1974, 38(4): 652-657.
[23]金盼,陈波,胡云世. 孔径分布对软黏土渗透特性的影响分析[J]. 水文地质工程地质, 2018, 45(4): 86-93.
[JIN P, CHEN B, HU Y S. Analyses of the effect of pore-size distribution on permeability of soft clays[J], Hydrogeology & Engineering Geology, 2018, 45(4): 86-93. (in Chinese)]

相似文献/References:

[1]胡卸文,侯羿腾,王严,等.火烧迹地土壤根系特征及其对抗剪强度的影响[J].水文地质工程地质,2019,46(05):106.[doi:10.16030/j.cnki.issn.1000-3665.2019.05.14]
 HU Xiewen,HOU Yiteng,WANG Yan,et al.Root characteristics and its influences on shear strength in burned areas[J].Hydrogeology & Engineering Geology,2019,46(06):106.[doi:10.16030/j.cnki.issn.1000-3665.2019.05.14]

备注/Memo

备注/Memo:
收稿日期: 2018-10-25; 修订日期: 2018-12-09
基金项目: 国家自然科学基金资助项目(41672283;41731285)
第一作者: 王严(1992-),男,博士研究生,主要从事地质灾害方面的研究。E-mail:yanwang@my.swjtu.edu.cn
通讯作者: 胡卸文(1963-),男,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com
更新日期/Last Update: 2019-11-15