[1]张敏,平建华,禹言,等.同位素技术解析安阳河与地下水相互作用[J].水文地质工程地质,2019,46(06):31-39.
 ZHANG Min,PING Jianhua,YU Yan,et al.Isotope analyses of the interaction between the Anyang River and groundwater[J].Hydrogeology & Engineering Geology,2019,46(06):31-39.
点击复制

同位素技术解析安阳河与地下水相互作用()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
31-39
栏目:
水 文 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Isotope analyses of the interaction between the Anyang River and groundwater
文章编号:
1000-3665(2019)06-0031-09
作者:
张敏1平建华1禹言1黄先贵1朱亚强2程玉刚2
1.郑州大学水利科学与工程学院,河南 郑州450001;2.安阳市水利局,河南 安阳455000
Author(s):
ZHANG Min1 PING Jianhua1 YU Yan HUANG Xiangui1 ZHU Yaqiang1 CHENG Yugang2
1.School of Water Conservancy & Environment, Zhengzhou University, Zhengzhou, Henan450001, China;
2.China Anyang Water Conservancy Burea, Anyang ,Henan455000,China
关键词:
同位素技术水化学河流-地下水相互作用安阳河
Keywords:
isotopic technology hydrochemistry river-groundwater interactions Anyang River
分类号:
P641.3;P641.8
文献标志码:
A
摘要:
河流与地下水相互作用研究是水文学研究的难点和热点。安阳河与地下水相互作用研究,对于安阳市水资源科学开发与管理具有重要意义。安阳河冲洪积扇地表水与地下水转化率为17%~27%。潜水位标高为80 m,向下游逐渐变成多层含水层(水位40 m)。当地降水环境同位素监测数据表明,当地大气降水线与全球大气降水线接近平行,表明该线代表本地区大气降水的氢氧同位素特征。地表水同位素值较集中,2016年8月δ18O值变化范围为-9‰~-8.7‰,δD值变化范围为-65‰~-63‰,2017年1月δ18O值变化范围为-8.5‰~-8.2‰,δD值变化范围为-63‰~-61‰,河水水化学类型为HCO3·SO4—Ca型,表明流域内地表水的同位素值受距离的影响较小。地下水稳定同位素值变化较大,2016年8月δ18O值范围为-10.4‰~-5.5‰,δD值范围为-75‰~-46‰,2017年1月δ18O值范围为-10.2‰~-5.4‰,δD值范围为-75‰~-45‰,即从接近降水值到最大值形成一条“蒸发”线。河流出山口一带地下水同位素值呈现最大蒸发值,表明地表水补给地下水,地下水化学类型为HCO3·SO4·Cl—Ca,存在明显人为污染成分。下游为大气降水补给浅层地下水,中深层地下水主要来源于中游侧向径流,水化学类型主要为HCO3—Ca·Mg型,综合分析表明,安阳河中下游(冲洪积扇)地带“三水”转换积极,并影响其水质、水量。
Abstract:
The study of interaction between rivers and groundwater is a difficult and hot topic in hydrological researches. The interaction between the Anyang River and groundwater is of great significance for the scientific development and management of water resources in the city of Anyang. The conversion rate of surface water and groundwater in the Anyang River alluvial fan ranges in downstream from 17% to 27%, and the aquifer system changes from the phreatic aquifer with the highest water table of 80 m to a multi-layer aquifer with groundwater level of 40 m. The analysis of local precipitation monitoring data shows that the local meteoric water line is parallel to the global meteoric water line, indicating that the line represents the hydrogen and oxygen isotope characteristics of atmospheric precipitation in the region. The isotope values of the surface water are concentrated. In August 2016, the δ18O value ranged from -9‰ to -8.7‰, and the δD value ranged from -65‰ to -63‰. In January 2017, the δ18O value ranged from -8.5‰ to -8.2‰, the δD value varies from -63‰ to -61‰, and the hydrochemical type of the river water is of HCO3·SO4-Ca type, indicating that the watershed is less affected by the distance. The stable isotope values of groundwater varys greatly. In August 2016, the δ18O value ranged from -10.4‰ to -5.5‰, and the δD value, from -75‰ to -46‰. In January 2017, the δ18O value ranged from -10.2‰ to -5.4 ‰, and the value of δD, from -75‰ to -45‰, that is, an “evaporation” line is formed from the approaching precipitation value to the maximum value. The isotope values of groundwater in the middle reaches of the river (out of the mountain pass) shows the maximum evaporation value, indicating that surface water replenished to groundwater. Hydrochemical type of groundwater is of HCO3·SO4·Cl-Ca type, and there are obvious human pollution components. The shallow groundwater is recharged from infiltration of precipitation in downstream. The middle and deep groundwater mainly originates from the lateral flow in the middle reaches, and the hydrochemical type is mainly HCO3-CaoMg. type The comprehensive analysis shows that the “three waters” in the middle and lower reaches of the Anyang River (alluvial fan) have actively converted and affected its water quality and quantity.

参考文献/References:

[1]胡俊锋,王金生,滕彦国.地下水与河水相互作用的研究进展[J].水文地质工程地质,2004,31( 1) : 108-113.

[HU J F, WANG J S , TENG Y G. Research progress on interaction between groundwater and river water[J].Hydrogeological & Engineering Geology, 2004,31(1) : 108-113.(in Chinese)]
[2]LAN D CLARK, PETER FRITZ. Environmental Isotopes in Hydrogeology[M]. Ottawa:CRC Press, 1997.
[3]孙宝刚,徐德增,刘杨杨.生态水文学研究进展[J]. 现代农业科技,2010,5:231-233.
?[SUN B G, XU D Z, LIU Y Y. Progress in ecological hydrology[J]. Modern Agricultural Technology, 2010,5:231-233.(in Chinese)]
[4]夏军.生态水文学的进展与展望[J].中国防汛抗旱,2018,28(6):1-5.?
[XIA J. Progress and Prospects of Ecological Hydrology[J]. Flood Control and Drought Resistance in China, 2018,28(6):1-5,21.(in Chinese)]
[5]张兵,宋献方,张应华,等.第二松花江流域地表水与地下水相互关系[J].水科学进展,2014,25(3):336-347.
[ZHANG B, SONG X F, ZHANG Y H, et al. The relationship between surface water and groundwater in the second Songhua River Basin [J].Progress in Water Science, 2014,25(3):336-347.(in Chinese)]
[6]宋献方,刘相超,夏军,等.基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J].中国科学: D 辑,2007,37( 1) : 102-110.
[SONG X F, LIU X C, XIA J, et al. Study on the relationship between surface water and groundwater conversion in the Huaisha River Basin based on environmental isotope techniques[J]. Chinese Science: Series D, 2007,37(1) : 102-110.(in Chinese)]
[7]焦艳军,王广才,崔霖峰,等.济源盆地地表水和地下水的水化学及氢、氧同位素特征[J].环境化学,2014,33(6):962-968.
[JIAO Y J, WANG G C, CUI L F, et al. Water chemistry and hydrogen and oxygen isotope characteristics of surface water and groundwater in Jiyuan Basin[J].Environmental Chemistry, 2014,33(6):962-968.(in Chinese)]
[8]张兵,宋献方,张应华,等.三江平原地表水与地下水氢氧同位素和水化学特征[J].水文,2014,34(2):38-43.
[ZHANG B, SONG X F, ZHANG Y H, et al. Hydrogen and oxygen isotope and water chemistry characteristics of surface water and groundwater in Sanjiang Plain[J].Hydrology, 2014,34(2):38-43.(in Chinese)]
[9]胡玥,刘传琨,卢粤晗,等.环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展,2014,29(10):1158-1166.
[HU Y, LIU C K, LU Y H, et al. Application of Environmental Isotopes in the Study of Water Cycle in the Heihe River Basin [J].Progress in earth science, 2014,29(10):1158-1166.(in Chinese)]
[10]DAY K,POETERE.Investigating hydraulic connections and the origin of water in a mine tunnel using stable isotopes and hydrographs[J].Applied Geochemistry,2009,24(12) : 2266-2282.
[11]聂振龙,陈宗宇,程旭学,等. 黑河干流浅层地下水与地表水相互转化的水化学特征[J]. 吉林大学学报(地球科学版), 2005, 35(1):48-53.
[NIE Z L, CHEN Z Y, CHENG X X, et al. Hydrochemical characteristics of mutual transformation between shallow groundwater and surface water in the mainstream of Heihe River [J].Journal of Jilin University (Earth Science Edition), 2005, 35(1):48-53.(in Chinese)]
[12]李满洲,高淑琴,李贶家.河南平原第四系地下水氢氧同位素特征与补给分析[J].工程勘察,2010,38(11):42-47.
[LI M Z, GAO S Q, LI Y J. Hydrogen and oxygen isotope characteristics and recharge analysis of quaternary groundwater in Henan plain[J]. Engineering Investigation, 2010,38(11):42-47.(in Chinese)]
[13]YEH H F,LEE C H,HSU K C. Oxygen and hydrogen isotopes for the characteristics of groundwater recharge: A case study from the Chih-Pen Creek basin,Taiwan [J].Environmental Earth Sciences,2011,62( 2): 393-402
[14]连英立,张光辉,聂振龙,等.张掖盆地地下水及其补给水源的同位素特征[J].勘察科学技术,2011,2(5):11-16.
[LIAN Y L, ZHANG G H, NIE Z L, et al. Isotope characteristics of groundwater and its recharge water source in Zhangye Basin [J]. Survey science and technology, 2011,2(5):11-16.(in Chinese)]
[15]钱云平,Andrew L.H.,张春岚,等. 应用222Rn 研究黑河流域地表水与地下水转换关系[J]. 人民黄河, 2005,27(12):58-59,61.
[QIAN Y P, Andrew L H, ZHANG C L, et al. Application of 222Rn to study the relationship between surface water and groundwater conversion in the Heihe River Basin [J].People of the Yellow River,2005,27(12):58-59,61.(in Chinese)]
[16]BRIAN G KATZ, RODNEY S DEHAN, UOSHUA J HIRTEN, et al. Interactions between ground water and surface water in the Suwannee River basin, Florida [J]. Journal of the American Water Resources Association, 1997, 33(6):1237-1254.
[17]BRIAN G KATZ, TYLER B COPLEN, THONAS D BULLEN, et al. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst[J].Ground Water, 1997, 35(6): 1014-1028.
[18]王瑞久.三线图解及其水文地质解释[J]. 工程勘察,1983,6:6-11.
[WANG R J. Diagram of Piper for Hydrogeology [J] . Investigation and Surveying, 1983,6:6-11.(in Chinese)]
[19]邓启,李方红,李伟,等.蒲阳河流域地下水水化学及同位素特征[J].水文地质工程地质,2017,44(2):8-14.
[DENG Q, LI F H, LI W, et al. Groundwater hydrochemistry and isotope characteristics in Puyang river basin[J]. Hydrogeology & Engineering Geology, 2017,44(2):8-14.(in Chinese)]
[20]王文祥,王瑞久,李文鹏,等.塔里木盆地河水氢氧同位素与水化学特征分析[J].水文地质工程地质,2013,40(4):29-35.
[WANG W X, WANG R J, LI W P, et al. Analysis of stable isotope and hydrochemistry of rivers in Tarim Basin [J]. Hydrogeology & Engineering Geology, 2013,40(4):29-35.(in Chinese)]

相似文献/References:

[1]苗晋祥.基于同位素的豫北平原浅层地下水形成的认识[J].水文地质工程地质,2010,37(4):5.
 MIAO Jin-xiang.Formation of the shallow groundwater in the Northern Henan Plain based on isotope ananlyses[J].Hydrogeology & Engineering Geology,2010,37(06):5.
[2]师永霞,王贵玲,高业新,等.华北东部平原地下水垂向循环的水化学与同位素标示[J].水文地质工程地质,2010,37(4):18.
 SHI Yong-xia,WANG Gui-ling,GAO Ye-xin.Indication of hydrochemistry and isotope for vertical circulation of groundwater in the North China Plain[J].Hydrogeology & Engineering Geology,2010,37(06):18.
[3]张雪,周训,李再光,等.河北丰宁县洪汤寺温泉的水化学与同位素特征[J].水文地质工程地质,2010,37(5):123.
 ZHANG Xue,ZHOU Xun,LI Zai-guang,et al.Hydrochemical and isotopic characteristics of the Hongtangsi hot spring in Fengning County of Hebei Province[J].Hydrogeology & Engineering Geology,2010,37(06):123.
[4]董维红,苏小四,侯光才,等.鄂尔多斯白垩系盆地地下水矿化度和主要离子浓度的分布规律[J].水文地质工程地质,2008,35(4):11.
 DONG Wei-hong,SU Xiao-si,HOU Guang-cai,et al.Study on distribution law of TDS and main ion concentration in groundwater in the Ordos Cretaceous Artesian Basin[J].Hydrogeology & Engineering Geology,2008,35(06):11.
[5]万利勤,徐慧珍,殷秀兰,等.济南西郊水源地和市区泉群的水质变化[J].水文地质工程地质,2008,35(4):17.
 WAN Li-qin,XU Hui-zhen,YIN Xiu-lan,et al.Changes study of groundwater quality of Xijiao well fields and downtown springs in Jinan[J].Hydrogeology & Engineering Geology,2008,35(06):17.
[6]李亚民,王英男,徐旭,等.奎屯河流域南洼地地下水补给特征分析[J].水文地质工程地质,2008,35(4):31.
 LI Ya-min,WANG Ying-nan,XU Xu,et al.Characteristics of groundwater rechargement of Nanwadi in Kuitun River Basin[J].Hydrogeology & Engineering Geology,2008,35(06):31.
[7]王晓曦,王文科,王周锋,等.滦河下游河水及沿岸地下水水化学特征及其形成作用[J].水文地质工程地质,2014,41(1):25.
 [J].Hydrogeology & Engineering Geology,2014,41(06):25.
[8]拓明明,周训,郭娟,等.重庆温泉及地下热水的分布及成因[J].水文地质工程地质,2018,45(1):165.
 TA Mingming,ZHOU Xun,GUO Juan,et al.Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J].Hydrogeology & Engineering Geology,2018,45(06):165.
[9]史杰,乃尉华,李明,等.新疆曲曼高温地热田水文地球化学特征研究[J].水文地质工程地质,2018,45(03):165.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.23]
 SHI Jie,NAI Weihua,LI Ming,et al.Hydrogeochemical characteristics of high temperature geothermal field of the Quman geothermal field in Xinjiang[J].Hydrogeology & Engineering Geology,2018,45(06):165.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.23]
[10]任坤,潘晓东,焦友军,等.贵州洪家渡盆地泉水水化学和碳同位素特征及成因[J].水文地质工程地质,2019,46(3):9.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.02]
 REN Kun,PAN Xiaodong,JIAO Youjun,et al.Characteristics and controls of the hydrochemistry and carbon isotope of thespring water in the Hongjiadu Basin of Guizhou[J].Hydrogeology & Engineering Geology,2019,46(06):9.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.02]

备注/Memo

备注/Memo:
收稿日期: 2019-01-15; 修订日期: 2019-03-10
基金项目: 国家自然科学基金与河南省自然科学基金联合资助(U1504404)
第一作者: 张敏(1993-),女,硕士研究生,主要从事水文学及水资源方面的研究。E-mail:2460287350@qq.com
通讯作者: 平建华(1976-),男,博士,副教授,主要从事水文水资源教学与研究工作。E-mail: pingjianhua@zzu.edu.cn
更新日期/Last Update: 2019-12-02