[1]阳玲,等.运用地下水对潮汐的响应识别压力传导系数[J].水文地质工程地质,2019,46(06):26-30.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.04]
 YANG Ling,DU Jinyue,WANG Tongke,et al.Identification of hydraulic conductivity using the response of groundwater levels to oceanic tide[J].Hydrogeology & Engineering Geology,2019,46(06):26-30.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.04]
点击复制

运用地下水对潮汐的响应识别压力传导系数()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
26-30
栏目:
水 文 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
Identification of hydraulic conductivity using the response of groundwater levels to oceanic tide
文章编号:
1000-3665(2019)06-0026-05
作者:
阳玲1 2杜金月1王同科1赵志学1郝永红2
1.天津师范大学数学科学学院,天津300387;2.天津师范大学天津市水资源与水环境重点实验室,天津300387
Author(s):
YANG Ling12 DU Jinyue1 WANG Tongke1 ZHAO Zhixue1 HAO Yonghong2
1.College of Mathematical Science, Tianjin Normal University, Tianjin300387, China;2.Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin300387, China
关键词:
地下水潮汐压力传导系数牛顿迭代法地下水扩散方程
Keywords:
groundwater oceanic tide hydraulic diffusivity Newton iteration methodgroundwater diffusion equation
分类号:
P641.2
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.04
文献标志码:
A
摘要:
在地下水扩散方程中,压力传导系数是描述地下水运动的重要参数。传统的方法是通过抽水或注水给地下水系统一个扰动,监测地下水水位的响应,由此计算含水层的压力传导系数。文章提出用潮汐衰减率方法识别含水层压力传导系数,其适用于滨海区承压含水层的参数识别。在推导出解析解的基础上,通过数值拟合、最小二乘法、牛顿迭代法求得含水层的压力传导系数,提出潮汐衰减率的概念,建立余切函数与潮汐衰减率的线性关系,用线性关系中的斜率和截距识别压力传导系数。用潮汐衰减率方法识别出的压力传导系数与其实际值相等,说明该方法是正确有效的。潮汐信号衰减率与海水振荡的余切函数线性相关。数值仿真表明,该方法可以准确地估算出含水层的压力传导系数。潮汐衰减率方法具有少打井,经济高效等优点。潮汐衰减率方法为实际工程应用提供了可靠的理论基础,它可以用于部分实际工程中。该方法的局限性在于需要提供含水层的部分参数,如含水层的长度、海水波动振幅、频率等。
Abstract:
Hydraulic conductivity is an important parameter describing groundwater movement in the groundwater diffusion equation. The traditional method is to give a disturbance to the groundwater system by pumping or injecting water, monitor the response of groundwater levels to the tide, and calculate the hydraulic conductivity of an aquifer. In this paper, a method of tidal attenuation rate is proposed to identify the hydraulic conductivity. It is suitable for identifying parameters of a confined aquifer in coastal areas. After deriving the analytical solution, the hydraulic conductivity of the aquifer is obtained by numerical fitting, least square method and Newton iteration method. The concept of tidal attenuation rate is proposed. The linear relationship between the cotangent function and the tidal attenuation rate is established. The slope and intercept of the linear relationship are used to identify the hydraulic conductivity. In this paper, the hydraulic conductivity identified by the method of tidal attenuation rate is equal to its actual value, showing that the method is correct and effective. The attenuation rate of tidal signals is linearly correlated with the cotangent function of sea water oscillation. The numerical simulation shows that the method can accurately estimate the hydraulic conductivity of the aquifer. The method of tidal attenuation rate has the advantages of less well-drilling, being economical and efficient. The tidal attenuation rate method provides a reliable theoretical basis for practical engineering applications and can be used in some practical projects. The limitation of this method lies in the need of some parameters of the aquifer, such as the length of the aquifer, the amplitude and frequency of sea water fluctuation, etc.

参考文献/References:

[1]International Maritime Organization (IMO). Inter-national shipping facts and figures – Information resources on trade, safety, security, environment[M/OL]. http://www.imo.org/en/KnowledgeCentre/ShipsAndShippingFactsAndFigures/TheRoleandImportanceofInternationalShipping/Documents/International%20Shipping%20-%20Facts%20and%20Figures.pdf#search=Share%20of%20the%20different%20sources%20of%20pollution%20into%20the%20 marine%20environment.
[2]MOORE WS, AMOLD R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research, 1996, 101 (Sup1):1321-1329.
[3]LAMONTAGNE M G, DURAN R, VALIELA. Nitrous oxide sources and sinks in coastal aquifers and coupled estuarine receiving waters[J]. Science of the Total Environment, 2003, 309(1/2/3):139-149.
[4]SHEN P X, WANG S J, CLARE R. Memory of past random wave conditions in submarine groundwater discharge[J]. Geophysical Research Letters, 2014, 41(7): 2401–2410.
[5]MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010(2): 59-88.
[6]骆乾坤,王佩,朱国荣.水文地质参数识别的快速和谐搜索算法[J].水文地质工程地质,2011,38(4):14-19.
[LUO Q K, WANG P, ZHU G R. Fast harmony search algorithm and its application to hydrogeological parameters identification[J]. Hydrogeology & Engineering Geology, 2011,38(4):14-19.(in Chinese)]
[7]GUO H P, JIAO J J, LI H L. Groundwater response to tidal fluctuation in a two-zone aquifer[J]. Journal of Hydrology, 2010, 381(3/4): 364-371.
[8]PACHECO FAL, LANDIM P M B, SZOCS T. Bridging hydraulic diffusivity from aquifer to particle-size scale: a study on loess sediments from southwest Hungary[J].Hydrological Sciences Journal-journal Des Sciences Hydrologiques, 2015, 60(2): 269-284.
[9]TREFRY M G, JOHNSTON C D. Pumping test analysis for a tidally forced aquifer[J]. Ground Water, 1998, 36 (3): 427-433.
[10]DOAN M L, BRODSKY E E, KANO Y, et al. In situ measurement of the hydraulic diffusivity of the active Chelungpu Fault, Taiwan[J]. Geophysical Research Letters, 2006, 33(16): L16317.
[11]LI V C. Estimation of in-situ hydraulic diffusivity of rock masses[J].Pure and Applied Geophysics, 1984, 122(2/4): 545-599.
[12]KAMP GVD. Methods for determining the in situ hydraulic conductivity of shallow aquitards-an overview[J].Hydrogeology Journal , 2001, 9(1): 5-16.
[13]RASMUSSEN T C, HABORAK K G, YOUNG M H. Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA[J]. Hydrogeology Journal , 2003, 11(4):466–482.
[14]FERRIS J G. Cyclic fluctuations of water level as a basis for determining aquifer transmissibility[J]. Int Assoc Hydrolog Sci, 1951, 33(2):148-155.
[15]ERSKINE A D. The effect of tidal fluctuation on a coastal aquifer in the U K[J]. Ground Water, 1991, 29(4):556-562.
[16]ZHOU X, SONG C, LI T. Estimation of aquifer parameters using tide-induced groundwater level measurements in a coastal confined aquifer[J]. Environmental Earth Sciences, 2015, 73(5):2197-2204.
[17]LI H L, JIAO J J. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage[J]. Advances in Water Resources, 2001,24 (5):565-573.
[18]TOWNLEY L R. The response of aquifers to periodic forcing[J]. Advances in Water Resources, 1995, 18(3):125-125.
[19]李海龙,宋金颖,万力,等.承压含水层井孔储存效应对气压波动引起的井孔水位波动的影响[J].水文地质工程地质,2013,,40(4):1-6.
[LI H L, SONG J Y,WAN L, et al. The response of well-aquifer systems to barometric loading [J]. Hydrogeology & Engineering Geology, 2013,40(4):1-6.(in Chinese)]
[20]DEUFLHARD, PETER, HOHMANN, ANDREAS. Numerical analysis in modern scientific computing. An Introduction[M]. 2nd ed. New York: Springer Press, 2003:81-117.

相似文献/References:

[1]刘立才,郑凡东,张春义.南水北调水源与北京地下水混合的水质变化特征[J].水文地质工程地质,2012,39(1):1.
 LIU Li cai,ZHENG Fan dong,ZHANG Chun yi.Characteristics of water quality of SouthtoNorth water diversion mixed with groundwater in Beijing[J].Hydrogeology & Engineering Geology,2012,39(06):1.
[2]赵娇娟,郝永红,李华敏,等.基于地下水压力波传播过程的泉水流量灰色系统模型[J].水文地质工程地质,2011,38(6):1.
 ZHAO Jiao-juan,HAO Yong-hong,LI Hua-min,et al.Grey model for karst spring discharge based on propagation process of groundwater pressure wave[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[3]蔡五田,张敏,刘雪松,等.论场地土壤和地下水污染调查与风险评价的程序和内容[J].水文地质工程地质,2011,38(6):125.
 CAI Wu-tian,ZHANG Ming,LIU Xue-song,et al.On procedure and contents of investigation and risk assessment with regard to site soil and groundwater contamination[J].Hydrogeology & Engineering Geology,2011,38(06):125.
[4]李华,焦彦杰,吴文贤,等.西南岩溶地区找水的地球物理方法探讨[J].水文地质工程地质,2011,38(5):1.
 LI Hua,JIAO Yan-jie,WU Wen-xian,et al.A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[5]徐力刚,叶昌,张奇,等.基于模糊模式识别的地下水水质综合评价研究[J].水文地质工程地质,2011,38(5):7.
 XU Li-gang,YE Chang,ZHANG Qi,et al.Application of fuzzy pattern recognition for the comprehensive assessment of groundwater quality[J].Hydrogeology & Engineering Geology,2011,38(06):7.
[6]赵振华,袁革新,吴吉春,等.西北某放射性废物处置预选区地下水水化学特征及地球化学模拟[J].水文地质工程地质,2011,38(4):1.
 ZHAO Zhen-hua,YUAN Ge-xin,WU Ji-chun,et al.Hydrochemical characteristics and hydrogeochemical modeling of groundwater in a certain potential radioactive waste disposal site in Northwest China[J].Hydrogeology & Engineering Geology,2011,38(06):1.
[7]王金婷,毕二平.油田区地下水系统特殊防污性能评价[J].水文地质工程地质,2011,38(3):82.
 WANG Jin-ting,BI Er-ping.Evaluation of specific vulnerability of a groundwater system in an oilfield[J].Hydrogeology & Engineering Geology,2011,38(06):82.
[8]徐海珍,李国敏,张寿全,等.北京市平谷盆地地下水三维数值模拟及管理应用[J].水文地质工程地质,2011,38(2):27.
 XU Hai-zhen,LI Guo-min,ZHANG Shou-quan,et al.Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J].Hydrogeology & Engineering Geology,2011,38(06):27.
[9]余婷婷,甘义群,刘存富,等.基于单体多维稳定同位素分析的地下水有机污染研究进展[J].水文地质工程地质,2011,38(1):103.
 YU Ting-ting,GAN Yi-qun,LIU Cun-fu,et al.Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination[J].Hydrogeology & Engineering Geology,2011,38(06):103.
[10]张茂省,董英,孙萍萍,等.基于水位的赵家岸滑坡风险分析与控制[J].水文地质工程地质,2011,38(1):123.
 ZHANG Mao-sheng,DONG Ying,SUN Ping-ping,et al.Risk analysis and control of the Zhaojiaan landslide through controlling water levels[J].Hydrogeology & Engineering Geology,2011,38(06):123.

备注/Memo

备注/Memo:
收稿日期: 2018-10-15; 修订日期: 2018-12-14
基金项目: 天津市自然科学基金重点项目(18JCZDJC39500);天津市高等学校创新团培养计划项目(TD13-5078)
第一作者: 阳玲(1993-),女,研究生,主要从事数理统计研究。E-mail: 1334417805@qq.com
通讯作者: 郝永红(1964-),男,教授,主要从事水文水资源方面的研究。E-mail: haoyh@sxu.edu.cn
更新日期/Last Update: 2019-11-15