[1]马致远,李嘉祺,翟美静,等.沉积型和火山型地热流体的同位素水文地球化学对比研究[J].水文地质工程地质,2019,46(06):9-18.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.02]
 MA Zhiyuan,LI Jiaqi,ZHAI Meijing,et al.A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type[J].Hydrogeology & Engineering Geology,2019,46(06):9-18.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.02]
点击复制

沉积型和火山型地热流体的同位素水文地球化学对比研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年06期
页码:
9-18
栏目:
水 文 地 质
出版日期:
2019-11-15

文章信息/Info

Title:
A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type
文章编号:
1000-3665(2019)06-0009-10
作者:
马致远1李嘉祺1翟美静1吴敏12许勇12
1.长安大学环境科学与工程学院,陕西,西安710054;2.旱区地下水文与生态效应教育部重点实验室,陕西,西安710054
Author(s):
MA Zhiyuan1 LI Jiaqi1 ZHAI Meijing1 WU Min12 XU Yong12
1.College of Environmental Science and Engineering, Chang’an University, Xi’an, Shaanxi710054, China; 2.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, Shaanxi710054, China
关键词:
关中盆地腾冲热海水文地球化学同位素地热流体成因模式
Keywords:
Guanzhong Basin Tengchong Rehai hydrogeochemical isotope geothermal fluid henetic formation
分类号:
P641.3
DOI:
10.16030/j.cnki.issn.1000-3665.2019.06.02
文献标志码:
A
摘要:
地热资源按地质构造及成因的不同可划分为火山型及沉积盆地型两种类型。国内外许多学者对沉积型地热系统的同位素水文地球化学研究较多,而火山型地热系统研究不足,且沉积型和火山型地热流体的同位素水文地球化学对比研究还有待进一步深入。文章以关中盆地腹部沉积型地热系统及腾冲火山地热系统为代表,应用同位素水文地球化学方法对不同类型地热流体的地质构造、地热流体起源及成因、热储开放程度等进行系统对比研究,进而揭示其异同之处,为我国不同类型地热资源的可持续开发利用提供科学依据。关中盆地与腾冲热海地热系统在热储空间、构造条件、热源方面均存在较大差异,前者热储更为封闭,热储层更厚,后者热储通道更为畅通,热源更为丰富;腾冲热海地热系统热储温度高,埋藏更浅,热水循环更快,更易于开发利用。关中盆地与腾冲热海地热系统均存在比较明显的δ18O富集现象,关中盆地地热流体滞留时间更长是δ18O富集的主控因素,腾冲较高的热储温度是δ18O富集的主控因素;关中盆地腹部为沉积-半封闭型、封闭型,腾冲热海地热系统为火山-半封闭型;在漫长的地质历史时期,水岩反应的程度是决定热储流体水化学类型的主控因素。
Abstract:
Geothermal resources can be divided into volcanic type and sedimentary basin type according to the different geological structures and geneses. Many scholars at home and abroad have done many researches on isotopic hydrogeochemistry of geothermal systems of sedimentary basin type. However, the study of volcanic geothermal systems is insufficient, and the comparative study of isotopic hydrogeochemistry between sedimentary and volcanic geothermal fluids needs to be further carried out. The geothermal system in the abdomen of the Guanzhong Basin and the Tengchong volcanic geothermal system are selected as representative geothermal systems. Isotopic hydrogeochemical methods are used to geological structures of different types of geothermal fluid origin and formation, thermal storage, geothermal fluid openness, and so on. The comparative studies of the similarities and differences may provide a scientific basis of different types of the sustainable development and utilization of geothermal resources in China. The Guanzhong Basin and the Tengchong Rehaia geothermal systems have large differences in thermal storage space, structural conditions and heat sources. The former has a more closed heat storage and a thicker thermal reservoir. The latter has a smoother heat storage channel and a richer heat source. The Tengchong Rehai geothermal system has a high heat storage temperature, shallower burial, faster hot water circulation, and easier development and utilization. Both the Guanzhong Basin and the Tengchong rehai geothermal systems have obvious δ18O enrichment. The longer geothermal fluid retention time is the main controlling factor of δ18O enrichment for the Guanzhong Basin geothermal fluids, and the higher thermal storage temperature is responsible for the δ18O enrichment in the Rehai geothermal fluids. The main controlling factors include: (1) the abdomen of the Guanzhong Basin is a semi-closed and closed sedimentary basin, and the Tengchong Rehai geothermal system is of semi-closed volcanic type. The degree of water-rock reaction during a long geological history is often the main controlling factor determining the hydrochemical type of the hot-storage fluids.

参考文献/References:

[1]李录娟.亚洲地热图编制及地热潜力评估[D].长春:吉林大学, 2011.
[LI L J. Asian geothermal map compilation and geothermal potential assessment[D].Changchun: Jilin University,2011.(in Chinese)]
[2]GIGGENBACH W F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica Et Cosmochimica Acta, 1988, 52(12): 2749-2765
[3]DANSGAARD W. The abundance of O18 in atmospheric water and water vapour[J]. Tellus, 2010, 5(4): 461-469.
[4]陈履安.贵州热矿水热储温度的估算[J].贵州地质,1995(1): 69-77.
[CHEN L A. Estimation of water heat storage temperature in Guizhou hot mine[J]. Guizhou Geology, 1995(1): 69-77.(in Chinese)]
[5]张晓伦,梁杏,孙敬.奇村地热田水化学特征及其混合作用模拟[J].水文地质工程地质,2007,34(6):95-99.
[ZHANG X L,LIANG X,SUN J. Simulation of water chemistry characteristics and mixing effects of geothermal field in Qicun[J]. Hydrogeological & Engineering Geology, 2007, 34(6): 95-99.(in Chinese)]
[6]刘军强.应用地热温标估算热储温度——以嵊州崇仁热水为例[J].西部探矿工程,2014,26(5):129-132.
[LIU J Q. Estimating heat storage temperature by using geothermal temperature scale—taking Chongren hot water in Zhangzhou as an example[J].Western Exploration Project,2014,26(5): 129-132.(in Chinese)]
[7]马致远,王心刚,苏艳,等.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报,2008,27(6):888-894.
[MA Z Y,WANG X G,SU Y,et al.H and O isotope exchange of underground hot water in the central Guanzhong basin, Shaanxi, and its influencing factors[J]. Geological Bulletin of China,2008,27(6):888-894. (in Chinese)]
[8]克拉克,弗里茨.水文地质学中的环境同位素[M].郑州: 黄河水利出版社, 2006.
[CLARK, FRITZ. Environmental isotope in hydrogeology[M].Zhengzhou: Yellow River Water Conservancy Press,2006.(in Chinese)]
[9]马致远,钱会.环境同位素地下水文学[M].西安:陕西科学技术出版社,2004.
[MA Z Y, QIAN H. Environmental isotope groundwater literature[M]. Xi’an: Shaanxi Science and Technology Press, 2004.(in Chinese)]
[10]张兆兴,段亚东.云南腾冲热海是地热电力开发的最佳热田[C]//全国地热产业可持续发展学术研讨会,2005.
[ZHANG Z X, DUAN Y D. Yunnan tengchong atami is the best thermal field for geothermal power development[C]// National Symposium on Sustainable Development of Geothermal Industry,2005.(in Chinese)]
[11]佟伟.腾冲地热[M].北京:科学出版社,1989.
[TONG W. Tengchong geothermal[M].Beijing: Science Press,1989.(in Chinese)]
[12]刘明亮.不同热源类型地热系统的地球化学对比[D].武汉:中国地质大学,2015.
[LIU M L. Geochemical comparison of geothermal systems with different heat sources[D].Wuhan: China University of Geosciences, 2015.(in Chinese)]
[13]舒良树.普通地质学[M].北京:地质出版社,2010.
[SHU L S. General geology[M]. Beijing: Geological Publishing House,2010.(in Chinese)]
[14]MA Zhiyuan, ZHANG Xuelian, WU Ming, et al. Isotope constraint for genetic types of geothermal water in the center part of Guanzhong basin, NW China [J]. Journal of Civil Engineering and Construction, 2015, 4(2): 96-108.
[15]王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,2(4):605-612.
[WANG Y, ZHOU X, YU Y, et al. Estimation of underground thermal storage temperature using geothermal temperature scale[J]. Modern Geology,2007,2(4): 605-612.(in Chinese)]
[16]吴红梅,孙占学.地热系统中矿物—流体化学平衡的计算[J]. 东华理工大学学报(自然科学版),2000,23(1):39-42.
[WU H M,SUN Z X. Calculation of mineral-fluid chemical equilibrium in geothermal systems[J]. Journal of East China Institute of Technology (Natural Science Edition), 2000,23(1):39-42.(in Chinese)]
[17]马致远,张雪莲,何丹.关中盆地深层地热水36Cl侧年研究[J].水文地质工程地质,2016,43(1):157-163.
[MA Z Y,ZAHNG X L,HE D. Study on the 36Cl side year of deep geothermal water in Guanzhong Basin [J]. Hydrogeological & Engineering Geology, 2016,43(1):157-163.(in Chinese)]
[18]田华.关中盆地环境同位素分布特征及水文地质意义[D].西安:长安大学,2003.
[TIAN H. Environmental isotope distribution characteristics and hydrogeological significance of the Guanzhong Basin [D].Xi’an: Changan University,2003.(in Chinese)]
[19]SU Y H, ZHU G F, FENG Q, et al. Environmental isotopic and hydro-chemical study of groundwater in the Ejina Basin, northwest China[J]. Environmental Geology, 2009, 58 (3): 601-614.
[20]BULLEN T D, KRABBENHOFT D P, KENDALL C. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicon aquifer, northern Wisconsin, USA[J]. Geochim Cosmochim Acta, 1996, 60: 1807-1821.
[21]马致远,范基姣.陕西渭北东部岩溶地下水中硫酸盐的形成[J].煤田地质与勘探,2005,33(3): 45-48.
[MA Z Y, FAN J J. Sulfate formation in karst groundwater in eastern Weibei, Shaxi Province [J]. Coalfield Geology and Exploration,2005,33(3): 45-48.(in Chinese)]

相似文献/References:

[1]段磊,王文科,孙亚乔,等.关中盆地浅层地下水氮污染的健康风险评价[J].水文地质工程地质,2011,38(3):92.
 DUAN Lei,WANG Wen-ke,SUN Ya-qiao,et al.Health risk assessment of "Three Nitrogen" in shallow groundwater in the Guanzhong Basin[J].Hydrogeology & Engineering Geology,2011,38(06):92.

备注/Memo

备注/Memo:
收稿日期: 2018-09-04; 修订日期: 2018-11-14
基金项目: 国家自然科学基金资助项目(41472221;41172211)
第一作者: 马致远(1956-),女,教授,主要从事地热、同位素水文地球化学研究。 E-mail:zhiyuanma56@163.com
更新日期/Last Update: 2019-11-15