[1]王雨山,李戍,李海学,等.海原盆地地下水咸化特征和控制因素[J].水文地质工程地质,2019,46(04):10-17.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.02]
 WANG Yushan,LI Shu,LI Haixue,et al.Groundwater salinization characteristics and controlling factors in the Haiyuan Basin[J].Hydrogeology & Engineering Geology,2019,46(04):10-17.[doi:10.16030/j.cnki.issn.1000-3665.2019.04.02]
点击复制

海原盆地地下水咸化特征和控制因素()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年04期
页码:
10-17
栏目:
地质灾害隐患和水文地质环境地质调查计划
出版日期:
2019-07-15

文章信息/Info

Title:
Groundwater salinization characteristics and controlling factors in the Haiyuan Basin
文章编号:
1000-3665(2019)04-0010-08
作者:
王雨山李戍李海学程旭学刘伟坡张梦南
中国地质调查局水文地质环境地质调查中心,河北 保定071051
Author(s):
WANG Yushan LI Shu LI Haixue CHENG Xuxue LIU Weipo ZHANG Mengnan
Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding, Hebei071051, China
关键词:
地下水咸化溶滤作用蒸发地下水补给海原盆地
Keywords:
groundwater salinization dissolution evaporation groundwater recharge Haiyuan Baisn
分类号:
P641.3
DOI:
10.16030/j.cnki.issn.1000-3665.2019.04.02
文献标志码:
A
摘要:
地下水是海原盆地唯一的供水水源,近年来部分地区地下水溶解性总固体(TDS)增高,引起了有关部门和水文地质工作者的高度关注。通过分析69组地下水样品的水化学和氢氧稳定同位素数据,对地下水补给来源和咸化的水文地球化学过程进行了研究。结果表明:地下水TDS值198.2~6 436.4 mg/L,沿着地下水流向,咸化程度增加,水化学类型从基岩区的HCO3—Ca·Mg型演化至滞留—排泄区的SO4·Cl—Na·Mg型。地下水补给来源主要为大气降雨和基岩裂隙水侧向径流,补给源—对地下水咸化贡献较小。溶滤作用具空间差异,基岩区和补给区以碳酸盐、硅酸盐风化为主,径流区和滞留—排泄区则为蒸发岩风化,硫酸盐是地下水中阳离子的主要来源。补给水、溶滤和蒸发对第四系地下水TDS的贡献比率分别为4.8%~81.2%、11.9% ~85.9%、1.7%~29.5%,溶滤作用是控制海原盆地地下水咸化的首要因素。当地有关部门应加大对基岩泉水的综合利用,同时注意控制海原县和西安镇等地区地下水开采量,防止地下水进一步咸化。另外,在微咸水分布区可引进地下水去除硫酸盐技术,提高微咸水利用程度。
Abstract:
Groundwater is the dominant resource of water supply for meeting domestic needs in the Haiyuan Basin. In recent years, the increasing salinity has been found in groundwater around some areas, to which high attention has been pain by the relevant departments and hydrogeologists. Determining the distribution of groundwater total solved solids and understanding the salinization mechanism are important for water supplies and sustainable development. Isotopic and geochemical analyses are conducted for 69 water samples from springs and boreholes to identify groundwater recharge sources and potential processes that control the increasing salinity. The results show that the total dissolved solid (TDS) in the groundwater range from 198.2 to 6436.4 mg/l and increase along the groundwater flow path. The hydrochemical types evolve from HCO3—Ca·Mg type in the bedrock area to SO4·Cl—Na·Mg type in the discharge area. The sources of natural groundwater recharge include precipitation and lateral groundwater flows from the mountain areas in the southwest of the basin, both of which have minor contributions to the groundwater salinity. Carbonate and silicate weathering plays a dominant role in the bedrock recharge area, and evaporate weathering, in the flow-through and discharge area. The contribution ratios of the initial water, dissolution and evaporation to TDS of the groundwater vary from 4.8% to 81.2%, 11.9% to 85.9% and 1.7% to 29.5%, respectively. The dissolution process is the first order controlling factors on the groundwater salinization in the Haiyuan Basin. It is suggested that the springs in the bedrock area should be developed and the groundwater exploration should be adjusted in Haiyuan County and Xi′an village to prevent salinization. Furthermore, the technology that can remove sulfate from groundwater should be introduced in the areas where brackish water exists.

参考文献/References:

[1]VANDERZALM J L, JEUKEN B M, WISCHUSEN J D, et al. Recharge sources and hydrogeochemical evolution of groundwater in alluvial basins in arid central Australia [J]. Journal of Hydrology, 2011, 397(1): 71-82.
[2]李文鹏,郝爱兵,李鹏,等. 对我国干旱区地下水资源的几点认识[J]. 水文地质工程地质,1996,23(5):14-15.
[LI W P,HAO A B,LI P,et al. Recognizing of several questions about groundwater resources of arid area in China [J]. Hydrogeology & Engineering Geology, 1996, 23(5): 14-15. (in Chinese)]
[3]TWEED S, LEBLANC M, CARTWRIGHT I, et al. Arid zone groundwater recharge and salinisation processes: an example from the Lake Eyre Basin, Australia [J]. Journal of Hydrology, 2011, 408(3): 257-275.
[4]CARY L, PETELETGIRAUD E, BERTRAND G, et al. Origins and processes of groundwater salinization in the urban coastal aquifers of Recife (Pernambuco Brazil): a multi-isotope approach [J]. Science of the Total Environment, 2015, 530/531: 411-429.
[5]SUN Z Y, MA R, WANG Y X, et al. Hydrogeological and hydrogeochemical control of groundwater salinity in an arid inland basin: Dunhuang Basin, northwestern China [J]. Hydrological Processes, 2016, 30(12): 1884-1902.
[6]徐彦泽,田小伟,郑跃军,等. 沧州市浅层地下水的咸化与淡化[J]. 水文地质工程地质,2009,36(2): 112-116.
[XU Y Z, TIAN X W, ZHENG Y J, et al. Increase and decrease in salinity of the shallow groundwater in Cangzhou [J]. Hydrogeology & Engineering Geology, 2009, 36(2): 112-116. (in Chinese)]
[7]焦杏春. 地下水水质评价和水资源管理:水文地球化学和同位素方法的应用研究进展[J]. 地质学报, 2016, 90(9):2476-2489.
[JIAO X C. Groundwater quality assessment and groundwater resource management: a review on hydrogeochemical and stable isotope approaches [J]. Acta Geologica Sinica, 2016, 90(9): 2476-2489. (in Chinese)]
[8]孙小龙,王广才,邵志刚,等. 海原断裂带土壤气与地下水地球化学特征研究[J]. 地学前缘, 2016, 23(3): 140-150.
[SUN X L, WANG G C, SHAO Z G, et al. Geochemical characteristics of emergent gas and groundwater in Haiyuan fault zone [J]. Earth Science Frontiers, 2016, 23(3): 140-150. (in Chinese)]
[9]袁瑞强,龙西亭,王鹏,等.氯离子质量平衡法应用问题刍议[J]. 水文,2015,35(4): 7-13.
[YUAN R Q, LONG X T, WANG P, et al. Discussion on application of chloride mass balance method [J]. Journal of China Hydrology, 2015,35(4): 7-13. (in Chinese)]
[10]苏小四,林学钰. 银川平原地下水循环及其可更新能力评价的同位素证据[J]. 资源科学,2004,26(2):29-35.
[SU X S, LIN X Y. Cycle Pattern and Renewability Evaluation of Groundwater in Yinchuan Basin: Isotopic Evidences [J]. Resources Science, 2004, 26(2): 29-35. (in Chinese)]
[11]陈中笑,程军,郭品文. 中国降水稳定同位素的分布特点及影响因素[J]. 大气科学学报,2010, 33(6): 667-679.
[CHENG Z X, CHENG J, GUO P W. Distribution characteristics and its control factors of stable isotope in precipitation over China [J]. Transactions of Atmospheric Sciences, 2010, 33(6): 667-679. (in Chinese)]
[12]顾慰祖,庞忠和,王全九,等. 同位素水文学[M]. 北京:科学出版社, 2011: 31-33.
[GU W Z, PANG Z H, WANG Q J, et al. Isotope Hydrology [M]. Beijing: Science Press, 2011: 66-77. (in Chinese)]
[13]赵玮,马金珠,何建华. 党河流域敦煌盆地地下水补给与演化研究[J]. 干旱区地理,2015,38(6): 1133-1141.
[ZHAO W, MA J Z, HE J H. Groundwater recharge and geochemical evolution in the Dunhuang Basin of Danghe River, northwest China [J]. Arid Land Geography, 2015, 38(6): 1133-1141. (in Chinese)]
[14]张彧齐,周训,刘海生,等. 云南兰坪—思茅盆地红层中温泉和盐泉的水文地质特征[J]. 水文地质工程地质,2018,45(3): 40-48.
[ZHAGN Y Q, ZHOU X, LIU H S, et al. Hydrogeological characteristics of the hot springs and salty springs occurring in the redbeds in the Lanping-Simao Basin of Yunnan [J]. Hydrogeology & Engineering Geology, 2018, 45(3): 40-48. (in Chinese)]
[15]GAILLARDET J, DUPRé B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1): 3-30.
[16]李向全,余秋生,侯新伟,等. 宁南清水河盆地地下水循环特征与苦咸水成因[J]. 水文地质工程地质,2006,33(1): 46-51.
[LI X Q, YU Q S, HOU X W, et al. A study of the characteristics of groundwater circulation and the formation of bitter and saline groundwater in the Qingshuihe Basin in the southern Ningxia [J]. Hydrogeology & Engineering Geology, 2006, 33(1): 46-51. (in Chinese)]
[17]张兆迪,于开宁,刘景涛. 银川平原水化学特征分析[J]. 水文地质工程地质,2017,44(2): 23-30.
[ZHANG Z D, YU K N, LIU J T. Analysis of characteristics of hydrogeochemistry in Yinchuan Plain [J]. Hydrogeology & Engineering Geology, 2017, 44(2): 23-30. (in Chinese)]
[18]LEGRANDE A N, KELLEY M, SCHMJDT G A. Modeling insights into deuterium excess as an indicator of water vapor source conditions[J]. Journal of Geophysical Research, 2013, 118(2): 243-262.
[19]HUANG T M, PANG Z H. The role of deuterium excess in determining the water salinization mechanism: a case study of the arid Tarim River Basin, NW China [J]. Applied Geochemistry, 2012, 27(12): 2382-2388.
[20]王雨山,郭媛. 干旱区地下水咸化机制的区域氘盈余解析[J]. 水文地质工程地质,2015,42(6): 29-35.
[WANG Y S, GUO Y. A study of groundwater salinization mechanism in arid areas using regional deuterium excess [J]. Hydrogeology & Engineering Geology, 2015, 42(6): 29-35. (in Chinese)]
[21]TAN H B, HUANG J Z, ZHANG W J, et al. Fractionation of hydrogen and oxygen isotopes of gypsum hydration water and assessment of its geochemical indications [J]. Journal of the Geological Society of Australia, 2014, 61(6):793-801.

相似文献/References:

[1]刘立才,郑凡东,张春义.南水北调水源与北京地下水混合的水质变化特征[J].水文地质工程地质,2012,39(1):1.
 LIU Li cai,ZHENG Fan dong,ZHANG Chun yi.Characteristics of water quality of SouthtoNorth water diversion mixed with groundwater in Beijing[J].Hydrogeology & Engineering Geology,2012,39(04):1.
[2]赵娇娟,郝永红,李华敏,等.基于地下水压力波传播过程的泉水流量灰色系统模型[J].水文地质工程地质,2011,38(6):1.
 ZHAO Jiao-juan,HAO Yong-hong,LI Hua-min,et al.Grey model for karst spring discharge based on propagation process of groundwater pressure wave[J].Hydrogeology & Engineering Geology,2011,38(04):1.
[3]蔡五田,张敏,刘雪松,等.论场地土壤和地下水污染调查与风险评价的程序和内容[J].水文地质工程地质,2011,38(6):125.
 CAI Wu-tian,ZHANG Ming,LIU Xue-song,et al.On procedure and contents of investigation and risk assessment with regard to site soil and groundwater contamination[J].Hydrogeology & Engineering Geology,2011,38(04):125.
[4]李华,焦彦杰,吴文贤,等.西南岩溶地区找水的地球物理方法探讨[J].水文地质工程地质,2011,38(5):1.
 LI Hua,JIAO Yan-jie,WU Wen-xian,et al.A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J].Hydrogeology & Engineering Geology,2011,38(04):1.
[5]徐力刚,叶昌,张奇,等.基于模糊模式识别的地下水水质综合评价研究[J].水文地质工程地质,2011,38(5):7.
 XU Li-gang,YE Chang,ZHANG Qi,et al.Application of fuzzy pattern recognition for the comprehensive assessment of groundwater quality[J].Hydrogeology & Engineering Geology,2011,38(04):7.
[6]赵振华,袁革新,吴吉春,等.西北某放射性废物处置预选区地下水水化学特征及地球化学模拟[J].水文地质工程地质,2011,38(4):1.
 ZHAO Zhen-hua,YUAN Ge-xin,WU Ji-chun,et al.Hydrochemical characteristics and hydrogeochemical modeling of groundwater in a certain potential radioactive waste disposal site in Northwest China[J].Hydrogeology & Engineering Geology,2011,38(04):1.
[7]王金婷,毕二平.油田区地下水系统特殊防污性能评价[J].水文地质工程地质,2011,38(3):82.
 WANG Jin-ting,BI Er-ping.Evaluation of specific vulnerability of a groundwater system in an oilfield[J].Hydrogeology & Engineering Geology,2011,38(04):82.
[8]徐海珍,李国敏,张寿全,等.北京市平谷盆地地下水三维数值模拟及管理应用[J].水文地质工程地质,2011,38(2):27.
 XU Hai-zhen,LI Guo-min,ZHANG Shou-quan,et al.Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J].Hydrogeology & Engineering Geology,2011,38(04):27.
[9]余婷婷,甘义群,刘存富,等.基于单体多维稳定同位素分析的地下水有机污染研究进展[J].水文地质工程地质,2011,38(1):103.
 YU Ting-ting,GAN Yi-qun,LIU Cun-fu,et al.Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination[J].Hydrogeology & Engineering Geology,2011,38(04):103.
[10]张茂省,董英,孙萍萍,等.基于水位的赵家岸滑坡风险分析与控制[J].水文地质工程地质,2011,38(1):123.
 ZHANG Mao-sheng,DONG Ying,SUN Ping-ping,et al.Risk analysis and control of the Zhaojiaan landslide through controlling water levels[J].Hydrogeology & Engineering Geology,2011,38(04):123.

备注/Memo

备注/Memo:
收稿日期: 2018-09-10; 修订日期: 2018-12-14
基金项目: 中国地质调查局地质调查项目(DD20160288;DD20190333);国家自然科学基金项目(41502259)
第一作者: 王雨山(1984-),男,高级工程师,主要从事同位素水文地球化学研究。Email: cug_wys@sina.com
更新日期/Last Update: 2019-07-15