[1]陈卓,张丹,孙梦雅.基于FBG技术的土体含水率测量方法试验[J].水文地质工程地质,2018,45(04):108.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.16]
 CHEN Zhuo,ZHANG Dan,SUN Mengya.A study of soil moisture content measurement based on FBG technology[J].Hydrogeology & Engineering Geology,2018,45(04):108.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.16]
点击复制

基于FBG技术的土体含水率测量方法试验()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
108
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
A study of soil moisture content measurement based on FBG technology
文章编号:
1000-3665(2018)04-0108-05
作者:
陈卓 张丹孙梦雅
南京大学地球科学与工程学院,江苏 南京210023
Author(s):
CHEN Zhuo ZHANG Dan SUN Mengya
1.School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
关键词:
含水率亲水橡胶FBG形变
Keywords:
moisture content hydrophilic rubber fiber Bragg grating deformation
分类号:
P641.12
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.16
文献标志码:
A
摘要:
亲水橡胶是一种水敏性高分子聚合物,具有吸水膨胀、失水收缩的特性,同时其弹性、强度和持水能力保持不变。通过胶黏封装方法,将亲水橡胶与光纤耦合,利用FBG光纤传感技术,精确测量由于亲水橡胶吸水膨胀、失水收缩导致的光纤拉伸和压缩形变,当橡胶与土体含水率达到动态平衡时,可以通过测量光纤形变得到土体含水率。通过试验验证了亲水橡胶体变与其含水率之间的线性相关性,且在反复试验中亲水橡胶吸水、失水的能力基本保持不变,表明亲水橡胶可以作为含水率感测的换能材料;建立了FBG传感器中心波长与亲水橡胶含水率之间的对应关系;通过对黏土含水率的测试,发现该含水率传感器的FBG中心波长与黏土试样含水率呈分段线性关系,表明利用该传感器监测土体含水率的方法具有可行性,不仅可以实现含水率的原位监测,而且还能得到含水率的空间分布及其随时间的实时变化情况,为土体工程性质的评价、地质灾害的预测预报提供依据,具有广泛的应用前景。
Abstract:
Hydrophilic rubber is a sort of water-sensitive polymers. It is characterized by water swelling and shrinkage, while its elasticity, strength and water holding capacity remain unchanged. In this paper, hydrophilic rubber is coupled with the fiber with the adhesive packaging method.FBG (fiber Bragg grating) sensing technology is used to accurately measure the fiber tensile and compressive deformation, which are caused by water swelling and shrinkage. When the moisture content of rubber and the moisture content of soil are in a dynamic equilibrium, soil moisture content can be obtained by measuring the deformation. Firstly, the linear correlation between the hydrophilic rubber volume and its moisture content is verified by experiments. The ability of water swelling and shrinkage for hydrophilic rubber in repeated tests still remains unchanged, indicating that the hydrophilic rubber can be used as the energy exchange material for moisture content sensing. Then we establish the corresponding relationship between the central wavelength of FBG sensor and the moisture content of hydrophilic rubber. Finally, this moisture sensor is used to test the moisture content of clay. The piecewise linear relationship between the central wavelength of FBG sensor and the moisture content of clay sample shows that this moisture sensor has the feasibility of monitoring the soil moisture content. Not only can the sensor realize the in situ monitoring of moisture content, but also can get the spatial distribution of moisture content and its real-time changes. It can provide the basis for the evaluation of the engineering properties of soil and the prediction of geological hazard, which has wide application prospect.

参考文献/References:

[1]Gaskin G J, Miller J D. Measurement of soil water content using a simplified impedance measuring technique [J]. Journal of Agricultural Research,1996,63 (2): 153-160.
[2]张虎元, 王少一, 赵天宇,等. 利用高密度电阻率法进行盐渍土含水率的测定[J]. 水文地质工程地质, 2012, 39(1):95-101.
[ ZHANG H Y, WANG S Y, ZHAO T Y, et al. Determination of water content of saline soil with multi-electrode resistivity method[J]. Hydrogeology & Engineering Geology, 2012, 39(1):95-101. (in Chinese)]
[3]吕海波, 赵艳林, 陈川亮. 时域反射法测量膨胀土含水量试验研究[J]. 岩石力学与工程学报, 2008, 27(12):2568-2574.
[LYU H B, ZHAO Y L, CHEN C L. Experimental research on measuring water content of expansive soils by time domain reflectometry[J]. Chinese Journal of Rock Mechanics & Engineering, 2008, 27(12):2568-2574.(in Chinese)]
[4]陈仁朋, 陈伟, 王进学,等. 饱和砂性土孔隙水电导率特性及测试技术[J]. 岩土工程学报, 2010, 32(5):780-783.
[CHEN R P, CHEN W, WANG J X, et al. Electrical conductivity of pore water in saturated sand and its measurement technology[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5):780-783.(in Chinese)]
[5]Carcione, Seriani. An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil[J]. Geophysical Prospecting, 2000, 48(2):231-256.
[6]Skierucha W, Wilczek A. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range[J]. Sensors, 2010, 10(4):3314-3329.
[7]李玉霞, 杨武年, 童玲,等. 基于光谱指数法的植被含水量遥感定量监测及分析[J]. 光学学报, 2009, 29(5):1403-1407.
[LI Y X, YANG W N, TONG L, et al. Remote sensing quantitative monitoring and analysis of fuel moisture content based on spectral index[J]. Acta Optica Sinica, 2009, 29(5):1403-1407.(in Chinese)]
[8]常丹, 李旭, 刘建坤,等. 土体含水率测量方法研究进展及比较[J]. 工程勘察, 2014, 42(9):17-22.
[CHANG D , LI X ,LIU J S, et al. Study progress and comparison of soil moisture content measurement methods[J]. Geotechnical Investigation & Surveying, 2014, 42(9):17-22.(in Chinese)]
[9]Walker J P, Willgoose G R, Kalma J D. In situ measurement of soil moisture: a comparison of techniques[J]. Journal of Hydrology, 2004, 293(1/4):85-99.
[10]刘岚, 向洁, 罗远芳,等. 吸水膨胀橡胶的研究进展[J]. 高分子通报, 2006(9):23-29.
[LIU L , XIANG J , LUO Y F, et al. The research development of water-swellable rubber[J]. Chinese Polymer Bulletin, 2006, 28(9):23-29. (in Chinese)]
[11]Giallorenzi T G, Dandridge A. Optical fiber sensor technology[C]//Optical fiber sensor technology: Kluwer Academic, 2000:626-665.
[12]Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8):1263-1276.
[13]Jia-Yan H U, Yin X D. The multiplexing and demodulation of FBG sensors[J]. Study on Optical Communications, 2006, 14(1):63-66.
[14]黄丽, 郑春苗, 刘杰,等. 分布式光纤测温技术在黑河中游地表水与地下水转换研究中的应用[J]. 水文地质工程地质, 2012, 39(2):1-6.
[HUANG L, ZHENG C M, LIU J, et al. Application of distributed temperature sensing to study groundwater surface water interactions in the Heihe river basin[J]. Hydrogeology & Engineering Geology,2012, 39(2):1-6. (in Chinese)]
[15]LIU C, DING J, LANG Z, et al. Mechanical properties, water-swelling behavior, and morphology of water-swell able rubber prepared using cross linked sodium polyacrylate[J]. Journal of Applied Polymer Science, 2010, 102(2):1489-1496.
[16]JIN L, ZHANG W, ZHANG H, et al. An embedded sensor for simultaneous measurement of stress and temperature[J]. IEEE Photonics Technology Letters, 2005, 18(1):154-156.
[17]Merzbacher C I, Kersey A D, Friebele E J. Fiber optic sensors in concrete structures: a review[C]// Optical Fiber Sensor Technology. Springer US, 1999:196.

相似文献/References:

[1]陈强,孟国伟,刘世东,等.砂性土边坡稳定性离心模型试验研究[J].水文地质工程地质,2011,38(2):58.
 CHEN Qiang,MENG Guo-wei,LIU Shi-dong.Centrifuge model tests on the stability of sandy soil slopes[J].Hydrogeology & Engineering Geology,2011,38(04):58.
[2]宋雪琳,谢勋,齐剑峰,等.云南哀牢山某滑坡滑体与滑带土工程性质试验研究[J].水文地质工程地质,2010,37(4):77.
 SONG Xue-lin,XIE Xun,QI Jian-feng,et al.A study on the engineering properties of sliding-body and sliding-zone soil at Ailaoshan in Yunnan Province[J].Hydrogeology & Engineering Geology,2010,37(04):77.
[3]贺俊,杨平,何文龙,等.苏州地铁典型土层冻土力学特性研究[J].水文地质工程地质,2010,37(5):72.
 HE Jun,YANG Ping,HE Wen-long.Mechanical behavior research of typical frozen soil clay in Suzhou subway[J].Hydrogeology & Engineering Geology,2010,37(04):72.
[4]冯小东,刘高.不同含水状态砂岩分级循环荷载试验研究[J].水文地质工程地质,2017,44(1):110.
 FENG Xiaodong,LIU Gao.An experimental study of cyclic loading of sandstone under different water contents[J].Hydrogeology & Engineering Geology,2017,44(04):110.
[5]谷天峰,袁亮,胡炜,等.黑方台黄土崩解性试验研究[J].水文地质工程地质,2017,44(4):62.
 GU Tianfeng,YUAN Liang,HU Wei,et al.Experimental research on disintegration of the Heifangtai loess[J].Hydrogeology & Engineering Geology,2017,44(04):62.
[6]王桂尧,沙琳川,曹文贵,等.加筋率对稻秸秆加筋土开裂特性的试验研究[J].水文地质工程地质,2017,44(5):52.
 WANG Guiyao,SHA Linchuan,CAO Wengui,et al.An experiment study of cracking properties of rice straw reinforced soil with different ratios[J].Hydrogeology & Engineering Geology,2017,44(04):52.
[7]程鹏举,于青春.非饱和低渗砂岩突破压力试验研究——以柴达木盆地东部石炭系砂岩为例[J].水文地质工程地质,2017,44(6):77.
 CHENG Pengju,YU Qingchun.An experimental study of the breakthrough pressure of unsaturated low-permeability sandstone: a case study of the Carboniferous sandstone in the eastern Qaidam Basin[J].Hydrogeology & Engineering Geology,2017,44(04):77.
[8]李泽华,张云,马维俊,等.重塑压实黏土Ⅰ型断裂试验研究[J].水文地质工程地质,2018,45(02):44.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.07]
 LI Zehua,ZHANG Yun,MA Weijun,et al.An experimental study of the fracture toughness of a remoulded compacted clay[J].Hydrogeology & Engineering Geology,2018,45(04):44.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.07]
[9]沙琳川,王桂尧,张永杰,等.含水率与加筋率对加筋土抗剪强度的影响规律研究[J].水文地质工程地质,2018,45(02):51.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.08]
 SHA Linchuan,WANG Guiyao,ZHANG Yongjie,et al.A study of influence of water content and reinforcement ratio on the shear strength of reinforced soil[J].Hydrogeology & Engineering Geology,2018,45(04):51.[doi:10.16030/j.cnki.issn.1000-3665.2018.02.08]
[10]曾庆建,刘宝臣,张炳晖,等.红黏土崩解特性试验研究[J].水文地质工程地质,2018,45(03):93.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.12]
 ZENG Qingjian,LIU Baochen,ZHANG Binghui,et al.An experimental study of the disintegration characteristics of red clay[J].Hydrogeology & Engineering Geology,2018,45(04):93.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.12]

备注/Memo

备注/Memo:
收稿日期: 2017-11-10; 修订日期: 2017-12-05
基金项目: 国家自然科学基金(41572271);江苏省自然科学基金(BK20161239)
第一作者: 陈卓(1994-),女,硕士,主要从事环境岩土光纤感测技术等方面研究。E-mail:15950557029@163.com
通讯作者: 张丹(1976-),男,博士,副教授,硕士生导师,主要从事地质工程领域的相关研究。E-mail:zhangdan@nju.edu.cn
更新日期/Last Update: 2018-07-15