[1]金盼,陈波,胡云世.孔径分布对软黏土渗透特性的影响分析[J].水文地质工程地质,2018,45(04):86.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.13]
 JIN Pan,CHEN Bo,HU Yunshi.Analyses of the effect of pore-size distribution on permeability of soft clays[J].Hydrogeology & Engineering Geology,2018,45(04):86.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.13]
点击复制

孔径分布对软黏土渗透特性的影响分析()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
86
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Analyses of the effect of pore-size distribution on permeability of soft clays
文章编号:
1000-3665(2018)04-0086-08
作者:
金盼陈波胡云世
衢州学院建筑工程学院,浙江 衢州324000
Author(s):
JIN Pan CHEN Bo HU Yunshi
College of Civil Engineering and Architecture, Quzhou University, Quzhou, Zhejiang324000,China
关键词:
原状样 重塑样 渗透系数 孔径分布 参考孔隙比
Keywords:
undisturbed sample reconstituted samples permeability coefficient pore-size distribution reference void ratio
分类号:
TU411.4
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.13
文献标志码:
A
摘要:
用单向固结仪对取自不同地区的三种软黏土原状样和重塑样分别开展了固结渗透试验,得到不同土样的固结曲线和压缩曲线,推算土样在不同固结压力下的渗透系数。试验结果表明:相同应力时,土体的结构性使原状样的渗透系数明显大于相应重塑样的渗透系数,且随着固结压力的增大,两者的差距逐渐减小;原状样和重塑样的渗透系数与孔隙比的变化模式基本一致,但同一孔隙比下原状样的渗透系数大于相应的重塑样的渗透系数,比较浦东软黏土原状样和重塑样在相近孔隙比下的孔径分布曲线后确认:这是由于它们的孔径大小及分布存在明显差异引起的,且通过比较相同孔隙比下原状样和重塑样的大孔隙体积含量可合理地解释上述试验结果。最后,用简单表述土体的孔径大小及分布(土体的组构)的参考孔隙比e*10对多种软黏土的渗透指数Ck进行整理后,发现多种软黏土的原状样和重塑样均为一条相关度极高的ck-e*10直线,说明用参考孔隙比e*10可很好地反映土体的组构对软黏土渗透特性的影响。
Abstract:
The oedometer tests on undisturbed and reconstituted samples of three soft clays obtained from different districts with different sampling methods were conducted, and the compression curves and the coefficients of permeability under different consolidation pressures were gained. The test results show that the coefficients of permeability of the undisturbed samples are much larger than those of the reconstituted samples for the soil structure at the same pressure and the gap of coefficients of permeability will be smaller with the increasing consolidation pressure. The coefficients of permeability of the undisturbed and reconstituted samples are different at the same void ratio although they have the similar rule between the coefficient of permeability and void ratio. It can reasonably be explained by the difference in large pore-size volume between the undisturbed and reconstituted samples, which can be calculated from the pore-size distribution curves obtained from the mercury intrusion porosimetry tests on the Shanghai soft clay. Finally, the reference void ratio e*10, which is used to simply illustrate the soil fabric, is introduced to deal with the permeability change indices from different soft clays. The unique ck-e*10 curve with high relation, no matter undisturbed samples or reconstituted samples, shows that the reference void ratio e*10 is a reasonable parameter to illustrate the fabric effect on the permeability characteristic of soft clay.

参考文献/References:

[1]INDRARATNA B, RUJIKIATKAMJORN C, SATHANANTHAN I. Radial consolidation of clay using compressbility indices and varying horizontal permeability[J]. Canadian Geotechnical Journal, 2005, 42(5):1330-1341.
[2]WANG J X, FENG B, YU H P, et al. Numerical study of dewatering in a large deep foundation pit[J]. Environmental Earth Sciences, 2013, 69(3): 863-872.
[3]MESRI G, ROKHSAR A. Consolidaiton of normally consolidated clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1974, 100(GT8): 889-903.
[4]TAVENAS F, JEAN P, LEBLOND P, et a1. The permeability of natural soft clays-Part II: Permeability characteristics [J]. Canadian Geotechnical Journal, 1983, 20(4): 645-660.
[5]LEROUEIL S, DIENE M, TAVENAS F, et al. Direct determination of permeability of clay under embankments[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(6): 645-657.
[6]LEROUEIL S, BOUCLIN G, TAVENAS F, et al. Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal, 1990, 27(5): 568-579.
[7]LEROUEIL S, LERAT P, HIGHT D W, et al. Hydraulic conductivity of a recent estuarine silty clay at Bothkennar[J]. Geotechnique, 1992, 42(2): 275-288.
[8]NAGARAJ T S, PANDIAN N S, NARASIMAHA R S R. Stress state-permeability relationships for fine grained soils[J]. Geotechnique, 1993, 43(2): 333-336.
[9]HORPIBULSUK S, SHIBUYA S, FUENKAJORN K, et al. Assessment of engineering properties of Bangkok clay[J]. Canadian Geotechnical Journal, 2007, 44(2): 173-187.
[10]BOJANA DOLINAR. Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations[J]. Applied Clay Science, 2009, 45(1-2): 90-94.
[11]ZENG L L, HONG Z S, CAI Y Q, et al. Change of hydraulic conductivity during compression of undisturbed and remolded clays[J]. Applied Clay Science, 2011, 51(1-2): 86-93.
[12]孙德安, 许志良. 结构性软土渗透特性研究[J]. 水文地质工程地质, 2012, 39(1): 36-41.
[SUN D A, XU Z L. Permeability of structural soft soils[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 36-41. (in Chinese)]
[13]刘维正, 石名磊, 缪林昌. 天然沉积饱和黏土渗透系数试验研究与预测模型[J]. 岩土力学, 2013, 34(9): 2501-2507.
[LIU W Z, SHI M L, MIAO L C. Experimental Study of Permeability Coefficient of Natural Saturated cClay and its Prediction Model[J]. Rock and Soil Mechanics, 2013, 34(9): 2501-2507. (in Chinese)]
[14]BURLAND J B. On the compressibility and shear strength of natural clay [J]. Géotechnique, 1990, 40(3): 329-378.
[15]BURLAND J B, Rampello S, Georgiannou V N. A laboratory study of the strength of four stiff clays[J]. Géotechnique, 1996, 46(3): 491-514.
[16]张先伟, 孔令伟. 常温、常压、常态的大气环境下黏性土微观孔隙的缓慢变异特征[J].中国科学:技术科学, 2014, 44(2): 189-200.
[ZHANG X W, KONG L W. Research on variability characteristics of micropore of Zhanjiang clay under ambient emperature and Pressure, Normal Atmospheric[J]. Sci. China Tech. Sci, 2014, 44(2): 189-200. (in Chinese)]
[17]GAO Y, SUN D A, ZHOU A N. Hydro-mechanical behavior of unsaturated soil with different specimen preparations [J]. Canadian Geotechnical Journal, 2016, 53(6): 909-917.
[18]张先伟, 孔令伟, 郭爱国,等. 不同固结压力下强结构性黏土孔隙分布试验研究[J]. 岩土力学, 2014, 35(10): 2794-2800.
[ZHANG X W, KONG L W, GUO A G, et al. Experiment study of pore distribution of strong structural clay under different consolidation pressures[J]. Rock and Soil Mechanics, 2014, 35(10): 2794-2800. (in Chinese)]
[19]TAYLOR D W. Fundamentals of soil mechanics[M]. New York: John Wiley and Sons Inc., 1948.
[20]陈波, 孙德安, 吕海波. 海相软土压缩特性的试验研究[J]. 岩土力学, 2013, 34(2): 381-388.
[CHEN B, SUN D A, LYU H B. Experimental study of compression behavior of marine soft clays[J]. Rock and Soil Mechanics, 2013, 34(2): 381-388. (in Chinese)]

相似文献/References:

[1]李健,孙德安,陈波,等.浙西饱和红黏土的物理力学特性试验研究[J].水文地质工程地质,2017,44(6):51.
 LI Jian,SUN Dean,CHEN Bo,et al.An experimental study of the physical and mechanical behavior of the saturated lateritic clay in western Zhejiang[J].Hydrogeology & Engineering Geology,2017,44(04):51.

备注/Memo

备注/Memo:
收稿日期: 2017-12-08; 修订日期: 2018-01-15
基金项目: 浙江省基础公益研究计划项目资助(LGG18D020001); 国家自然科学基金项目资助(41402271); 衢州学院中青年学术骨干培养基金项目资助(XNZQN201514)
第一作者: 金盼(1983-),女,讲师,主要从事土的力学特性试验研究工作。E-mail: jinpan2046@163.com
通讯作者: 陈波(1984-),男,博士, 副教授,主要从事软黏土的基本性质及本构模型研究。
更新日期/Last Update: 2018-07-15