[1]刘争宏,王华山,周远强,等.安哥拉Quelo砂场地非饱和渗流试验与计算[J].水文地质工程地质,2018,45(04):79.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.12]
 LIU Zhenghong,WANG Huashan,ZHOU Yuanqiang,et al.Test and calculation of unsaturated seepage in the Angola Quelo sandy soil site[J].Hydrogeology & Engineering Geology,2018,45(04):79.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.12]
点击复制

安哥拉Quelo砂场地非饱和渗流试验与计算()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
79
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Test and calculation of unsaturated seepage in the Angola Quelo sandy soil site
文章编号:
1000-3665(2018)04-0079-07
作者:
刘争宏123王华山4周远强23唐国艺23于永堂23刘智23
1.长安大学地质工程与测绘学院,陕西 西安710054; 2.机械工业勘察设计研究院有限公司,陕西 西安710043;3.陕西省特殊岩土性质与处理技术重点实验室,陕西 西安710043;4.中国机械设备工程股份有限公司,北京100037
Author(s):
LIU Zhenghong123 WANG Huashan4ZHOU Yuanqiang23 TANG Guoyi23YU Yongtang23LIU Zhi23
1.School of Geology Engineering and Geomatics, Chang’an University, Xi’an, Shaanxi710054, China;2.China JK Institute of Engineering Investigation and Design Co. Ltd., Xi’an, Shaanxi710043, China; 3. Shaanxi Key Laboratory of Special Rocks & Soils, Xi’an, Shaanxi710043, China; 4.China Machinery Engineering Corporation, Beijing100037, China
关键词:
浸水试验Quelo砂非饱和渗流数值分析
Keywords:
immersion test Quelo sand unsaturated seepage numerical analysis
分类号:
TU413;TU441+.33
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.12
文献标志码:
A
摘要:
在安哥拉某Quelo砂土场地开展了现场试坑浸水试验,实测了水在地基土中的渗透和消散过程;通过室内测试得到砂土的主要物理参数,采用改进的Kovács粒径方法估计土-水特征曲线,Van Genuchen模型估算渗透系数曲线,数值模拟了与现场试验情况相同的水渗透和消散过程;对比了实测结果和数值计算结果的异同。研究结果表明浸水条件下自由水面之下的砂土远未达到完全饱和,数值计算结果虽能较好反映浸水渗透的宏观规律以及停水后水的消散过程,但要较准确预测水的浸润范围,需要建立经验的“饱和体积含水率”取值方法,本砂土场地“饱和体积含水率”取对应饱和度65%的体积含水率较为适宜。
Abstract:
Unsaturated seepage is an important issue in the field of geotechnical engineering. It is of important engineering and theoretical significance to carry out the contrast work between the numerical solution and the field test. A test pit immersion test was carried out on a collapsible sand site in Angola to measure the infiltration and dissipation process of water in the foundation soil. The main physical parameters of the sand were obtained by indoor test. The soil-water characteristic curve was estimated by the improved Kovács particle size method, and the curve of coefficient of permeability was estimated by the Van Genuchen model. The same water infiltration and dissipation process was simulated numerically. The similarities and differences between the measured and numerical results were compared. The results show that the sand under the free water surface is far below saturation under the condition of soaking water. Although the numerical results can reflect the macro rule of water infiltration and the dissipation process of water after water stops well, it is necessary to establish the empirical method of “saturated volumetric water content”, if the range of water infiltration need accurately predicting. The “saturated volumetric water content” of the sand site is appropriate for the volumetric water content corresponding to 65% saturation.

参考文献/References:

[1]刘保健,谢永利,于友成. 黄土非饱和入渗规律原位试验研究[J]. 岩石力学与工程学报,2004,23(24):4156-4160.
[LIU B J, XIE Y L, YU Y C. In-situ testing study on infiltration in unsaturated loess[J]. Chinese Journal of Rock and Mechanics and Engineering, 2004,23(24):4156-4160. (in Chinese)]
[2]黄雪峰,刘长玲,姚志华,等. 采用TDR水分计研究非饱和黄土入渗及自重湿陷变形规律[J].岩石力学与工程学报,2012,31(增刊1):3231-3238.
[HUANG X F, LIU C L YAO Z H, et al. Study of infiltration and collapsible deformation law of unsaturated loess under over burden pressure by using TDR soil water probe[J]. Chinese Journal of Rock and Mechanics and Engineering, 2012,31(Sup 1):3231-3238. (in Chinese)]
[3]Srivastava R, Yeh T C J. Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils[J]. Water Resources Research, 1991, 27(5):753-762.
[4]蒋中明,熊小虎,曾铃. 基于FLAC3D平台的边坡非饱和降雨入渗分析[J]. 岩土力学,2014,35(3):855-861.
[JIANG Z M, XIONG X H, ZENG L. Unsaturated seepage analysis of slope under rainfall condition based on FLAC3D [J]. Rock and Soil Mechanics, 2014,35(3):855-861. (in Chinese)]
[5]吴波鸿,莫疆. 膨胀土路堑边坡降雨入渗稳定性分析[J]. 建筑结构,2016,46(增刊1):851-855.
[WU B H, MO J. Effects of rainfall and infiltration on the stability of expansive soil cutting slope[J]. Building Structure, 2016,46(Sup 1):851-855. (in Chinese)]
[6]王成华,万正义,张成林. 非饱和砂土坡面降雨非正交入渗试验与数值模拟研究[J]. 岩土工程学报,2015, 37(8):1357-1363.
[WANG C H, WAN Z Y, ZHANG C L. Tests and numerical simulations of non-orthogonal rainfall infiltration on surfaces of unsaturated sand slopes [J]. Chinese Journal of Geotechnical Engineering, 2015,37(8):1357-1363. (in Chinese)]
[7]梁树,谢强,郭永春,等. 不同降雨条件下成都黏土基坑边坡入渗深度研究[J].水文地质工程地质,2017,44(5):107-111.
[LIANG S, XIE Q, GUO Y C, et al. Infiltration depth of Chengdu clay foundation pit slope under different rainfall conditions [J]. Hydrogeology & Engineering Geology, 2017, 44(5):107-111. (in Chinese)]
[8]于永堂,郑建国,刘争宏. 安哥拉 Quelo 砂抗剪强度特性试验研究[J]. 岩土力学, 2012, 33(增刊1):136-140.
[YU Y T, ZHENG J G, LIU Z H. Test study of shear strength properties of Angola Quelo sand[J]. Rock and Soil Mechanics, 2012, 33(Sup 1):136-140. (in Chinese)]
[9]彭友君, 岳栋, 陈华盛, 等. 安哥拉砂土地基碾压施工技术研究[J]. 施工技术, 2015, 44 (13): 38-42.
[PENG Y J, YUE D, CHEN H S, et al. The research on the rolling compaction construction technology for sandy soil foundation in Angola[J]. Construction Technology, 2015, 44 (13): 38-42. (in Chinese)]
[10]Soares A J L D A, Visser A. T. The performance of stabilized pebble bases under light urban traffic in Luanda, Republic of Angola[C]//Proceedings of the 26th Southern African Transport Conference (SATC). Pretoria, South Africa : Document Transformation Technologies cc, 2007: 267-276.
[11]孙宏伟, 董勤, 石峰. 南部非洲红砂地基工程特性初探[J]. 建筑结构, 2015, 45(18):105-107.
[SUN H W, DONG Q, SHI F. Preliminary discussion on geotechnical characteristics of red sand in southern Africa[J]. Building Structure, 2015, 45(18): 105-107. (in Chinese)]
[12]田予东, 赵伟, 宋义平, 等. 安哥拉Quelo砂湿陷性地区垫层法地基处理及基础设计研究[J]. 建筑结构, 2016, 46 (24): 66-69.
[TIAN Y D, ZHAO W, SONG Y P, et al. Research on replacement cushion foundation treatment and foundation design of collapsible Quelo sand area in Angola[J]. Building Structure, 2016, 46(24): 66-69. (in Chinese)]
[13]刘争宏, 廖燕宏, 张玉守. 罗安达砂物理力学性质初探[J]. 岩土力学, 2010, 31(增刊1): 121-126.
[LIU Z H, LIAO Y H, ZHANG Y S. Preliminary study of physic-mechanical properties of Luanda sand[J]. Rock and Soil Mechanics, 2010, 31(Sup 1): 121-126. (in Chinese)]
[14]Fredlund D G, Morgenstern N R. Constitutive Relations for Volume Change in Unsaturated Soils. Canadian Geotechnical Journal, 1976, 13(3): 261-276.
[15]Fredlund D G, Morgenstern N R. Stress state variables for unsaturated soils. ASCE, 1977, 103(5): 447-464.
[16]GEO-SLOPE国际有限公司. 非饱和土体渗流分析软件SEEP/W用户指南[M]. 北京:冶金工业出版社, 2011.
[GEO-SLOPE International Ltd. Unsaturated soil seepage analysis software SEEP/W user guide[M]. Beijing: Metallurgical Industry Press, 2011. (in Chinese)]
[17]Aubertin M, Mbonimpa M, Bussière B, et al. A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 2003, 40(6): 1104-1122.
[18]Ning Lu, William J Likos. Unsaturated Soil Mechanics[M]. John Wiley & Sons, Inc. 2004.
[19]DOGAN A, MOTZ L H. Saturated-unsaturated 3D groundwater model II: verification and application[J]. Journal of Hydrologic Engineering, 2005, 10(6): 505-515.

备注/Memo

备注/Memo:
收稿日期: 2017-01-21; 修订日期: 2018-03-26
基金项目: 科技部科技伙伴计划资助项目资助(KY201502002);陕西省科技统筹创新工程计划项目资助(2016KTZDSF04-05-01);CMEC 2016年科技研发基金项目资助(CMEC-KJYF-2016-06)
第一作者: 刘争宏(1980-),男,博士研究生,教授级高工,主要从事湿陷性土工程性质评价与地基处理技术。E-mail: liu_zh2004@163.com
通讯作者: 周远强(1
更新日期/Last Update: 2018-07-15