[1]崔素丽,黄森,韩琳,等.水泥窑灰改性黄土的湿陷性和强度特性研究[J].水文地质工程地质,2018,45(04):73.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.11]
 CUI Suli,HUANG Sen,HAN Lin,et al.A study of the collapsibility and strength property of loess stabilized by cement kiln ash[J].Hydrogeology & Engineering Geology,2018,45(04):73.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.11]
点击复制

水泥窑灰改性黄土的湿陷性和强度特性研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
73
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
A study of the collapsibility and strength property of loess stabilized by cement kiln ash
文章编号:
1000-3665(2018)04-0073-06
作者:
崔素丽1黄森1韩琳2张艳荣1
1.西北大学地质系/大陆动力学国家重点实验室,陕西 西安710069;2.中煤科工集团西安研究院有限公司,陕西 西安710077
Author(s):
CUI Suli1HUANG Sen1 HAN Lin2 ZHANG Yanrong1
1.Geological Department of Northwest University/State Key Laboratory of Continental Dynamics, Xi’an, Shaanxi710069, China; 2. Xi’an Research Institute, CCTEG, Xi’an, Shaanxi710077, China
关键词:
水泥窑灰黄土改性湿陷性强度特性微观试验
Keywords:
cement kiln ash loess stabilization collapsibility strength property microstructure
分类号:
TU411.5; TU411.6
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.11
文献标志码:
A
摘要:
对水泥窑灰改性黄土进行压缩、湿陷和无侧限抗压强度试验,研究水泥窑灰对黄土压缩性、湿陷性和强度特性的影响。同时进行压汞试验和扫描电镜试验,分析改性前后黄土的孔隙分布特征、颗粒接触形态和结构的变化,探索微观特征与宏观性质之间的关系。结果表明,向黄土中添加水泥窑灰能够显著降低其压缩性和湿陷性,使黄土由中压缩性降低为低压缩性,由中等湿陷降低到轻微湿陷乃至湿陷性消失,同时抗剪强度得到显著提高。微观试验结果表明,水泥窑灰改性后的团聚体间的孔隙消失,转化成为团聚体内的孔隙,且总孔隙比降低,土体更加密实;颗粒间连接作用增强,土体结构更加稳定。
Abstract:
Compressive test, collapse test and unconfined compressive strength test were conducted to investigate the compressibility, collapsibility and strength property of loess stabilized by cement kiln ash. Mercury intrusion porosimetry test and scanning electron microscope test were also performed to analyze the changes in the pore distribution characteristics, the contact form of soil particles and the structure of compacted samples for the stabilized loess. The results indicate that adding cement kiln ash to loess can make both the compressibility and collapsibility reduce prominently. The compressibility is reduced from moderate to low, and the collapsibility is reduced from moderate to mild and disappears at last. Furthermore, the strength property is enhanced obviously. The microscopic test results show that inter-aggregate pores in the stabilized loss sample disappear and change into inter-aggregate pores with the increasing cement kiln ash, and the total void ratio is also reduced. The connection between particle is enhanced, making the soil structure more stable.

参考文献/References:

[1]郭婷婷, 张伯平, 田志高, 等. 黄土二灰土工程特性研究[J].岩土工程学报, 2004, 26(5): 719-721.
[GUO T T, ZHANG B P, TIAN Z G, et al. Study on engineering characteristic of lime-flyash loess[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 719-721.(in Chinese)]
[2]徐实, 杨有海, 耿煊, 等. 石灰改性黄土的强度特性试验研究[J]. 兰州交通大学学报, 2006, 25(6): 97-100.
[XU S, YANG Y H, GENG X, et al. Experimental study on strength property of lime improved loess[J]. Journal of Lanzhou Jiaotong University, 2006, 25(6): 97-100. (in Chinese)]
[3]王天亮, 刘建坤, 田亚护. 冻融循环作用下水泥及石灰改性土静力特性研究[J]. 岩土力学, 2011, 32(1): 193-198.
[WANG T L, LIU J K, TIAN Y H. Static properties of cement-and lime-modified soil subjected to freeze-thaw cycles[J]. Rock and Soil Mechanics, 2011, 32(1): 193-198. (in Chinese)]
[4]吴朱敏,吕擎峰,王生新. 复合改性水玻璃加固黄土微观特征研究[J].岩土力学,2016, 37(增刊2):301-308.
[WU Z M, LYU Q F, WANG S X. Microstructure of loess reinforced by compositely modified sodium silicate[J]. Rock and Soil Mechanics, 2016, 37(Sup 2):301-308. (in Chinese)]
[5]吕擎峰,吴朱敏,王生新,等. 温度改性水玻璃固化黄土机制研究[J]. 岩土力学, 2013,34(5):1293-1298.
[LYU Q F, WU Z M, WANG S X, et al. Mechanism of temperature-modification silicification grouted loess[J]. Rock and Soil Mechanics, 2013, 34(5): 1293-1298. (in Chinese)]
[6]张虎元,林澄斌,生雨萌.抗疏力固化剂改性黄土工程性质试验研究[J].岩石力学与工程学报,2015, 34 (增刊1): 3574-3580.
[ZHANG H Y, LIN C B, SHENG Y M. Experimental study of engineering properties of loess reinforced by consolid system[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Sup 1): 3574-35801. (in Chinese)]
[7]王峻,王谦,王平,等. 粉煤灰掺入量对改性黄土动本构关系的影响[J]. 岩土工程学报, 2013, 35(增刊1): 156-160.
[WANF J, WANG Q, WANG P, et al. Effect of adding amount of fly ash on dynamic constitutive relationship[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup 1): 156-160. (in Chinese)]
[8]李志清,余文龙,范林峰,等. 改良黄土强度特性与工程处置试验研究[J]. 工程地质学报, 2011, 19(1):116-121.
[LI Z Q, YU W L, FAN L F, et al. Experimental research on strength characteristics and engineering treatment of improved leoss soil[J]. Journal of Engineering Geology, 2011, 19(1):116-121. (in Chinese)]
[9]国务院.中国21世纪议程——中国21世纪人口、环境与白皮书[M].北京: 中国环境工程出版社, 1994.
[The State Council. China’s Agenda 21-China’s population,environment and the white paper in the 21st century[M]. Beijing: Environmental Engineering of China publishing House,1994. (in Chinese)]
[10]Peethamparan S, Olel J, Helfrich K E. Evaluation of the engineering properties of cement kiln dust (CKD) modified kaolinite clay. 21st International Conference on Solid[J].Waste Technology and Management, Philadelphia, 2006:997-1006.
[11]Miller G A, Azad S. Influence of soil type on stabilization with cement kiln dust[J]. Construction and Building Materials,2000, 14(2): 89-95.
[12]Baghdadi Z A, Fatani M N, Sabban N A. Soil Modification by Cement Kiln Dust[J]. Journal of Materials in Civil Engineering, ASCE, 1995,7(4).
[13]英成飞.窑灰作为水泥混合材的应用[J]. 水泥,2015(12):14-15.
[YING C F. Kiln ash is used as cement mixture[J]. Cement, 2015(12): 14-15. (in Chinese)]
[14]代家聚.以钾长石为原料生产窑灰钾肥的试验与应用[J]. 化肥工业, 2017, 44(4):60-63.
[DAI J J. Experiment of production of kiln ash potassium fertilizer using potassium feldspar as raw material and use[J]. Chemical Fertilizer Industry, 2017, 44(4):60-63. (in Chinese) ]
[15]韦平. 应用XRD分析水泥窑灰矿渣型生态水泥水化过程的研究[J]. 水泥, 2007(7): 18-21.
[WEI P. Study on the analysis of the hydration process of cement kiln cinder by XRD[J]. Cement, 2007(7): 18-21. (in Chinese)]
[16]崔素丽,王安国,田明锦,等. 水泥窑灰(CKD)改性膨胀土的击实性试验研究[J]. 西北大学学报(自然科学版), 2016, 46 (2): 256-260.
[CUI S L, WANG A G, TIAN M J et al. Laboratory test on compaction properties of expansive soils reinforced with Cement kiln dust (CKD) content[J]. Journal of Northwest University (Natural Science Edition),2016, 46 (2): 256-260. (in Chinese)]
[17]崔素丽,延恺,王安国,等.水泥窑灰(CKD)改性膨胀土的胀-缩特性试验研究[J].水文地质工程地质,2015,42(5): 102-106.
[CUI S L, YANG K, WANF A G, et al. An experimental study of expansion-shrinkage characteristics of cement-kiln-dust-treated expansive soil[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 102-106.(in Chinese)]
[18]Shear D L , Olsen H W, Nelson K R. Effects of desiccation on the hydraulic conductivity versus void ratio relationship for natural clay[M]. Transportation Research Record, NRC, Washington DC: National Academy Press, 1993:1365-1370.
[19]方祥位,申春妮,李春海,等.陕西蒲城黄土微观结构特征及定量分析[J]. 岩石力学与工程学报, 2013, 32(9): 1917-1925.
[FANF X W, SHEN C N, LI C H, et al. Quantitative analysis of microstructure characteristics of Pucheng loess in Shaanxi Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(9):1917-1925. (in Chinese)]

相似文献/References:

[1]冯欣,韩志勇,罗维刚,等.黄土对含油废水的吸附作用研究[J].水文地质工程地质,2010,37(6):121.
 FENG Xin,HAN Zhi-yong,LUO Wei-gang,et al.Sorption of oily wastewater on loess in Lanzhou Area[J].Hydrogeology & Engineering Geology,2010,37(04):121.
[2]陈开圣,沙爱民.禹(门口)阎(良)黄土路基填料强度规律[J].水文地质工程地质,2009,36(5):44.
 CHEN Kai-sheng~(),SHA Ai-min~.Study on strength characteristic for loess subgrade filter of Yumenkou-Yanliang highway[J].Hydrogeology & Engineering Geology,2009,36(04):44.
[3]王松鹤,骆亚生,杨静敬,等.原状黄土固结蠕变特性试验研究[J].水文地质工程地质,2009,36(6):72.
 WANG Song-he,LUO Ya-sheng,YANG Jing-jing.Experimental study on creep consolidation behavior of intact loess[J].Hydrogeology & Engineering Geology,2009,36(04):72.
[4]石玉玲,门玉明,彭建兵,等.西安城区地裂缝破裂扩展的数值模拟[J].水文地质工程地质,2008,35(6):56.
 SHI Yu-ling,MEN Yu-ming,PENG Jian-bing,et al.Numerical simulation of ground-fissure cracking and extending in Xi’an[J].Hydrogeology & Engineering Geology,2008,35(04):56.
[5]王 谦,王兰民,袁中夏,等.汶川地震中甘肃清水田川黄土液化的试验研究[J].水文地质工程地质,2012,39(2):116.
 WANG Qian,WANG Lan-min,YUAN Zhong-xia,et al. A study of loess liquefaction induced by the Wenchuan Ms8.0 Earthquake in Tianchuan,Qingshui county, Gansu province [J].Hydrogeology & Engineering Geology,2012,39(04):116.
[6]蔺晓燕,李同录,赵纪飞,等.甘肃黑方台黄土固结-渗透特性试验研究[J].水文地质工程地质,2014,41(1):41.
 [J].Hydrogeology & Engineering Geology,2014,41(04):41.
[7]谢婉丽,葛瑞华,郭倩怡,等.灌溉作用下黄土宏观力学响应及微观结构特性研究[J].水文地质工程地质,2017,44(2):82.
 XIE Wanli,GE Ruihua,GUO Qianyi,et al.A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism[J].Hydrogeology & Engineering Geology,2017,44(04):82.
[8]王新刚,谷天峰,王家鼎.基质吸力控制下的非饱和黄土三轴蠕变试验研究[J].水文地质工程地质,2017,44(4):57.
 WANG Xingang,GU Tianfeng,WANG Jiading.Research on the triaxial creep test of unsaturated loess under the matric suction control[J].Hydrogeology & Engineering Geology,2017,44(04):57.
[9]程龙虎,聂如松,刘飞.裂隙性黄土单轴抗压试验研究[J].水文地质工程地质,2017,44(5):80.
 CHENG Longhu,NIE Rusong,LIU Fei.An experimental study of the uniaxial compressive strength of fractured loess[J].Hydrogeology & Engineering Geology,2017,44(04):80.
[10]习羽,李同录,江睿君,等.陇东黄土工程地质分层及其物理特性[J].水文地质工程地质,2018,45(04):67.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.10]
 XI Yu,LI Tonglu,JIANG Ruijun,et al.Engineering geological stratigraphy and physical properties of the loess in eastern Gansu[J].Hydrogeology & Engineering Geology,2018,45(04):67.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.10]

备注/Memo

备注/Memo:
收稿日期: 2017-02-02; 修订日期: 2018-03-26
基金项目: 自然科学基金重点项目资助(41630639);自然科学基金面上项目资助(41772285)
第一作者: 崔素丽(1980-),女,讲师,研究方向为特殊土处理、地质灾害防治。E-mail: sulicui2014@126.com
更新日期/Last Update: 2018-07-15