[1]姚显春,李宁,余春海,等.新疆公格尔高温引水隧洞围岩温度场试验研究[J].水文地质工程地质,2018,45(04):59.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.09]
 YAO Xianchun,LI Ning,YU Chunhai,et al.Filed test of temperature field of the surrounding rocks of high temperature in the Gonggerer diversion tunnel in Xinjiang[J].Hydrogeology & Engineering Geology,2018,45(04):59.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.09]
点击复制

新疆公格尔高温引水隧洞围岩温度场试验研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
59
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Filed test of temperature field of the surrounding rocks of high temperature in the Gonggerer diversion tunnel in Xinjiang
文章编号:
1000-3665(2018)04-0059-08
作者:
姚显春12李宁12余春海3郭宇3
1.西安理工大学岩土工程研究所,陕西 西安710048;2.西北旱区生态水利国家重点实验室,陕西 西安710048;3.水利部新疆维吾尔自治区水利水电勘测设计研究院,新疆 乌鲁木齐830000
Author(s):
YAO Xianchun12 LI Ning12 YU Chunhai3 GUO Yu3
1.Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi710048, China;2.State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area,Xi’an, Shaanxi710048, China; 3.Xinjiang Uygur Autonomous Region Institute of Water Resources and Electric Power Investigation and Design, Urumqi, Xinjiang830000, China
关键词:
高岩温 引水隧洞 围岩温度场 现场试验
Keywords:
high geothermal temperature diversion tunnel surrounding rock temperature field field test
分类号:
TU457
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.09
文献标志码:
A
摘要:
为研究高岩温引水隧洞的温度场分布规律,本文依托新疆公格尔引水隧洞高岩温洞段,设置围岩温度监测试验洞,利用自研发的围岩温度监测仪,测试了试验洞在施工期、过水运行期及模拟检修期的围岩温度,得到了不同条件下的隧道围岩温度分布特征与规律。结果表明:引水隧洞高温段,离隧洞中心一定距离,围岩温度趋于稳定,随着围岩深度加深,此温度值不再发生变化。自围岩深部开始,靠近洞壁,岩体温度值按指数递减。隧洞开挖扰动对于岩体温度场的影响半径约为2倍的开挖洞径。在隧洞施工开挖完成后,围岩温度不会因为开挖的结束而变小,反而会由于隧洞支护结构(喷层、衬砌)施做的封闭,温度会进一步上升。对于新疆公格尔引水隧洞高温段围岩温度,进水前后,围岩温度差可按40 ℃计算,在排水后检修期围岩深浅部温度差可按25 ℃计算。
Abstract:
In order to examine the distribution characteristics of temperature field of the high-geothermal diversion tunnel, this paper relies on the high-geothermal tunnel section of the Gonggeer diversion tunnel in Xinjiang and sets up a temperature monitoring test tunnel in the surrounding rocks. By using the self-designed surrounding rock temperature monitors, the surrounding rock temperature of the test tunnel during construction, operation and simulated overhaul period was tested. The temperature distribution characteristics of the tunnel surrounding rock under different conditions were obtained. The results show that the temperature of the surrounding rocks tends to be stable for a certain distance from the center of the tunnel in the high-geothermal section of the tunnel. With the deepening of the surrounding rocks, this temperature value no longer changes. From the deep part of the surrounding rocks of the tunnel wall and close to the tunnel wall, the temperature of the rock mass decreases exponentially. The influence distance of tunnel excavation disturbance on the temperature field of the rock mass is about twice the tunneling radius. After the excavation of the tunnel construction, the surrounding rock temperature will not be smaller due to the completion of excavation, but the temperature will further increase due to the closure made by the tunnel supporting structure (spray layer and lining). For the temperature of the surrounding rocks in the high temperature section of the Gonggerer diversion tunnel in Xinjiang, the temperature difference between the depth and tunnel wall of the surrounding rocks can be considered as 40 ℃. The temperature difference between the depth and the wall of the surrounding rocks during the overhaul can be considered as 25 ℃.

参考文献/References:

[1]王贤能,黄润秋,黄国明. 深埋长大隧道中地下水对地温异常的影响[J]. 地质灾害与环境保护,1996,7(4):23-27.
[WANG X N,HUANG R Q,HUANG G M. Analysis of effects of groundwater on geotemperature anomaly in deeply-lying long and big tunnel[J].Journal of Geological Hazards and Environment Preservation,1996,7(4):23-27.(in Chinese)]
[2]姚显春.高温差下隧洞围岩衬砌结构热应力特性研究[D]. 西安:西安理工大学,2013.
[YAO X C. Research on thermal stress characteristics of tunnel surrounding rock and lining structure under high temperature difference [D]. Xi’an: Xi’an University of Technology, 2013. (in Chinese)]
[3]赵国斌,徐学勇, 刘顺萍. 喀喇-昆仑山区引水发电洞高地温现象及成因探讨[J].工程地质学报,2015,23(6): 1196-1201.
[ZHAO G B, XU X Y, LIU S P. Phenomenon and cause of high geo-temperature of hydroelectric power diversion in tunnel Cara-Kunlun Mountains[J]. Journal of Engineering Geology,2015,23(6):1196-1201.( in Chinese)]
[4]陈尚桥,黄润秋. 深埋隧洞地温场的数值模拟研究[J]. 地质灾害与环境保护,1995,6(2):30-36.
[CHEN S Q, HUANG R Q. A numerical simulation of geotemperature field of a deeply buried tunnel[J]. Journal of Geological Hazards and Environment Preservation,1995,6(2):30-36.(in Chinese)]
[5]王贤能,黄润秋. 深埋长隧洞温度场的评价预测[J]. 水文地质工程地质, 1996,23(6):6-10.
[WANG X N, HUANG R Q. Evaluation and prediction of temperature field in deep buried tunnel [J]. Hydrogeology & Engineering Geology, 1996, 23(6): 6-10.(in Chinese)]
[6]陈永萍,谢强,宋丙林. 秦岭隧道岩温预测经验公式的建立[J]. 隧道建设, 2003,23(1):46-49.
[CHEN Y P, XIE Q, SONG B L. Establishment of experience formula of rock temperature prediction in Qinling tunnel [J]. Tunnel Construction, 2003,23 (1): 46-49. (in Chinese)]
[7]舒磊,楼文虎,王连俊. 羊八井隧道地温分析[J]. 冰川冻土, 2003,25(增刊1):24-28.
[SHU L, LOU W H, WANG L J. Geothermal analysis of the Yangbajing tunnel [J]. Glacier Permafrost, 2003,25 (Sup 1): 24-28. (in Chinese)]
[8]刘乃飞,李宁,余春海,等.布仑口水电站高温引水发电隧洞受力特性研究[J].水利水运工程学报,2014(4):14-20.
[LIU N F, LI N, YU C H, et al. Liu. Analysis of mechanical characteristics for high-temperature diversion tunnel of Bulunkou hydropower station [J]. Hydro-Science and Engineering, 2014(4):14-21. (in Chinese)]
[9]周小涵,曾艳华,杨宗贤,等.高地温隧道温度场的数值解[J].铁道科学与工程学报,2015,12(6): 1406-1411.
[ZHOU X H, ZENG Y H, YANG Z X, et al. Numerical solution of the heat transfer between tunnels and rocks in high-temperature geothermal region [J]. Journal of Rail Way Science and Engineering, 2015, 12(6): 1406-1411. (in Chinese)]
[10]王明年,唐兴华,吴秋军,等.高岩温隧道围岩-支护结构温度场演化规律[J].铁道学报,2016,38(11):126-132.
[WANG M N, TANG X H, WU Q J, et al. Temperature Field Variation Rules of Rock and Support Structure in High Rock Temperature Tunnel [J]. Journal of the China Railway Society, 2016, 38(11): 126-132. (in Chinese)]
[11]侯代平,刘乃飞,余春海,等. 新疆布仑口高温引水隧洞几个设计与施工问题探讨[J]. 岩石力学与工程学报, 2013, 32( 增刊2): 3396-3403.
[HOU D P, LIU N F, YU C H, et al. Discussion on several design and construction problems of Bulangkou high-temperature diversion tunnel in Xinjiang [J] .Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Sup 2): 3396-3403.(in Chinese)]
[12]刘国清. Nathpa Jhakri水电站引水隧道开挖中的复杂问题[J]. 隧道及地下工程,1998,8(4):34-39.
[LIU G Q. The complex problems in the excavation of Nathpa Jhakri Hydropower station tunnel[J]. The Tunnel and Underground Engineering,1998,8(4):34-39.(in Chinese)]
[13]和学伟. 高温高压热水条件下的引水隧洞施工[J]. 云南水力发电,2003(增刊1):59-61.
[HE X W. Diversion tunnel construction under high temperature and high pressure hot water conditions[J]. Yunnan Water Power, 2003(Sup 1):59-61.(in Chinese)]
[14]陈勤,段亚辉. 洞室和围岩温度对泄洪洞衬砌混凝土温度和温度应力影响研究[J].岩土力学,2010,31(3):986-992.
[GHEN Q, DUAN Y H. Influence of temperature in tunnel and surrounding rock on temperature and thermal stress of lining concrete of flood discharge tunnel[J]. Rock and Soil Mechanics, 2010, 31(3): 986-992.(in Chinese)]
[15]Bamonte P, Gambarova P G, Nafarieh A. High-temperature behavior of structural and non-structural shotcretes[J].Cement & Concrete Composites, 2016,73: 42-53.

备注/Memo

备注/Memo:
收稿日期: 2017-01-08; 修订日期: 2018-02-09
基金项目: 国家自然科学基金项目资助(50879068);陕西省教育厅基金项目资助(15JK1540)
第一作者: 姚显春 (1975-),男,博士,主要从事岩体力学、工程地质与爆破理论实践的研究与教学。E-mail:yxc@xaut.edu.cn
更新日期/Last Update: 2018-07-15