[1]胡卫东,谭建辉,曾律弦,等.变形协调条件下非线性破坏准则的加筋土坡临界高度上限解[J].水文地质工程地质,2018,45(04):45.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.07]
 HU Weidong,TAN Jianhui,ZENG Lyuxian,et al.Upper bound solution of critical heights of reinforced soil slope based on the nonlinear failure criterion and compatibility of deformation[J].Hydrogeology & Engineering Geology,2018,45(04):45.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.07]
点击复制

变形协调条件下非线性破坏准则的加筋土坡临界高度上限解()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
45
栏目:
工 程 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Upper bound solution of critical heights of reinforced soil slope based on the nonlinear failure criterion and compatibility of deformation
文章编号:
1000-3665(2018)04-0045-07
作者:
胡卫东1谭建辉2曾律弦1张泰来3
1.湖南理工学院土木建筑工程学院,湖南 岳阳414006;2. 湖南大学岩土工程研究所,湖南 长沙410082;3.香港大学土木工程系,香港999077
Author(s):
HU Weidong1 TAN Jianhui2 ZENG Lyuxian1 ZHANG Tailai3
1.College of Civil Engineering and Architecture, Hunan Institute of Science and Technology, Yueyang, Hunan414006, China; 2.Geotechnical Engineering Institute, Hunan University, Changsha, Hunan410082, China; 3.Department of Civil Engineering, The University of Hongkong, Hongkong999077, China
关键词:
加筋土坡临界高度变形协调非线性破坏准则极限分析
Keywords:
reinforced soil slope critical height compatibility of deformation nonlinear failure criterion upper limit analysis
分类号:
TU43;P642.22
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.07
文献标志码:
A
摘要:
针对现有加筋土坡稳定性分析研究大多基于线性Mohr-Coulomb破坏准则的现状,本文考虑了岩土材料破坏的非线性特性,采用非线性破坏准则和外切直线法,引入极限分析上限理论进行研究。根据加筋土坡的工程特性和变形机理,考虑破坏滑动层上筋材与土体变形协调特点及速度变化的连续性,分开计算素土的内力功和筋材能量耗散功率,在此基础上,建立直线破裂面和对数螺线破裂面机构的加筋土坡临界高度确定方法。对极限状态下加筋土坡临界高度的目标函数,采用序列二次规划非线性优化算法,得到上限解。最后,通过工程算例分析,并与已有离心模型试验结果和理论研究方法计算结果进行对比,结果表明本文计算方法考虑间断面滑动层筋材与土体变形协调及速度变化连续性是合理的,得到的上限解更优;非线性参数对加筋土坡稳定性有着重要影响,临界高度随非线性参数m的增大而减小。
Abstract:
The stability of a reinforced soil slope is conventionally calculated based on the linear Mohr-Coulomb failure criterion. However, experimented data have shown that the strength envelopes of almost all geotechnical materials have the nature of nonlinearity. In view of the problem, in this paper, a nonlinear failure criterion and a tangential technique method are employed to evaluate the critical height of the reinforced soil slope using the upper bound theorem of limit analyses. The characteristics of the deformation compatibility between the reinforced material and soil, and the continuity of speed variation on sliding soil layer are considered according to the engineering properties and deformation mechanism of the reinforced slope. The internal work of soil and the energy dissipation of the reinforced material are calculated separately. New methods for determining the critical height of a reinforced soil slope on the linear fracture surface and logarithmic spiral fracture surface are put forward based on the above research. The objective function of the critical height in the limit state is established. The upper bound solutions of the critical height are obtained by using the sequential quadratic programming optimization algorithm. The feasibility and rationality of the research approach in this paper is shown through comparison and analysis with the centrifuge test results and theoretical research results. It is found that the proposed method is superior. The deformation compatibility and the speed variation continuity on the sliding soil layer are reasonable. It can be seen that the nonlinear failure parameter has a significant effect on the critical height of the reinforced soil slope. Moreover, the critical height decreases with the increasing nonlinear coefficient.

参考文献/References:

[1]LADE P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surface[J].International Journal of Solids Structures,1977,13(11):1019-1035.
[2]HOEK E.BROWN E. Empirical strength criterion for rock masses[J].Journal of Geotechnical Engineering Division, ASCE,1980,106(GT9):1013-1035.
[3]YANG Xiao-li, YIN Jian-hua. Slope stability analysis with nonlinear failure criterion[J].Journal of Engineering Mechanics, American Society of Civil Engineering, 2004, 130(3): 267-273.
[4]胡卫东,张国祥.非线性破坏准则下的边坡稳定性塑性极限分析[J].岩土力学,2007,28(9):1909-1913.
[HU W D, ZHANG G X. Plastic Limit Analysis of slope stability with nonlinear failure criterion[J].Rock and Soil Mechanics, 2007,28(9): 1909-1913. (in Chinese)]
[5]PORBAHA A, ZHAO A, KOBAYASHI M, et al. Upper bound estimate of scaled reinforced soil retaining walls[J]. Geotextiles and Geomembranes, 2000, 18(6): 403-413.
[6]PORBAHA A, GOODINGS K J. Centrifuge modeling of geotextiles-reinforced steep clay slopes[J]. Canadian Geotechnical Journal, 1996, 33(5): 696-704.
[7]Jewell R A. Application of revised design charts for steep reinforced slope[J].Geotextiles and Geomembranes, 1991,10(3):203.
[8]Michalowski R L. Soil reinforcement for seismic design of geotechnical structures[J]. Computers and Geotechnics , 1998, 23: 1-17.
[9]MICHALOWSKI R L.Limit analysis in stability calculations of reinforced soil structures[J]. Geotextiles and Geomemhranes, 1998,16(6) :311-331.
[10]Radoslaw L M. Stability of uniformly reinforced slopes[J]. Journal of Geotechnical and Geoenviormental Engineering, 1997,123(6):546-556.
[11]Radoslaw L M. Limit analysis in stability calculations of reinforced soil structure[J]. Geotextiles and Geomembranes, 1998,16(6):311-331.
[12]崔新壮,姚占勇,商庆森,等.加筋土坡临界高度的极限分析[J].中国公路学报, 2007, 20(1): 1-6.
[CUI X Z, YAO Z Y, SHANG Q S, et al. Limit analysis of critical heights of reinforced soil slope[J]. China Journal of Highway and Transport, 2007, 20(1): 1-6. (in Chinese)]
[13]吴雄志,史三元,杜海金.土工织物加筋土坡稳定的塑性极限分析法[J].岩土力学,1994,15(2):55-61.
[WU X Z, SHI S Y, DU H J. Limit analysis for the stability of slopes reinforced with geotextile[J].Rock and Soil Mechanics, 1994,15(2):55-61. (in Chinese)]
[14]阙云,凌建明,袁燕.加筋土路堤稳定的极限分析[J].同济大学学报(自然科学版), 2008, 36(8): 1079-1084.
[QUE Y, LING J M, YUAN Y. Limit analysis of reinforced embankment stability[J].Journal of Tongji University: Natural Science, 2008, 36(8): 1079-1084. (in Chinese)]
[15]邓国瑞,芮勇勤,陈文胜.非关联流动法则下加筋土边坡稳定性研究[J].公路工程,2014, 39(3): 15-18.
[DENG G R,RUI Y Q,CHEN W S. Research of anchor reinforced slope stability under non-associated flow rule[J]. Highway Engineering , 2014, 39(3): 15-18. (in Chinese)]
[16]李秀娟,杨俊杰,丁原东,等.上限法在加筋土结构物稳定性分析中的应用[J].岩土力学, 2009, 30(8): 2409-2417.
[LI X J,YANG J J,DING Y D,et al. Application of upper bound method to stability analysis of reinforcement[J].Rock and Soil Mechanics,2009,30(8): 2409-2417. (in Chinese)]
[17]ZHANG X J, CHEN W F. Stability analysis of slopes with general nonlinear failure criterion[J].International Journal for Numerical and Analytical Methods in Geomechanics, 1987,11(1):33-50.
[18]SLOAN S W, KLEEMAN P W. Upper bound limit analysis using discontinuous velocity fields[J].Comp. Methods in Appl. Mech. of Engrg,1995,127(3):293-314.
[19]赵澎年.松散介质力学[M].北京:地震出版社,2010.
[ZHAO P N. Loose Medium Mechanics[M].Beijing: The Earthquake Press,2010. (in Chinese)]
[20]Leshchinsky D, Reinschmidt A J, Leshchinsky D, et al. Stability of membrane reinforced slopes[J].Journal of Geotechnical Engineering, 1985, 111(11):1285-1300.
[21]Leshchinsky D, Ling Hoe I, Wang Jui-Pin, et al. Equivalent seismic coefficient in geocell retention systems[J]. Geotextiles and Geomembranes, 2008,26: 1-10
[22]姜玉平,陈征宙,毕港,等.基于极限分析法的边坡临界高度及稳定性研究[J].水文地质工程地质,2012,39(2):43-46.
[JIANG Y P, CHEN Z Z, BI G, et al. Research on critical height and stability of slopes based on upper bound limit analysis method[J].Hydrogeology & Engineering Geology, 2012,39(2):43-46. (in Chinese) ]
[23]PORBAHA A, Goodings K J. Centrifuge modeling of geotextiles reinforced cohesive soil retaining walls[J].Journal of Geotechnical Engineering, 1996, 122(10):840- 848.
[24]PORBAHA A. Traces of slip surfaces in reinforced retaining structures[J]. Soils and Foundations, 1998, 38(1):89-95.
[25]王钊,乔丽平.基于极限分析上限法的加筋土坡临界高度[J].武汉大学学报(工学版),2005,38(5):67-75.
[WANG Z, QIAO L P. Critical height of reinforced slope based on limit analysis upper bound method[J]. Engineering Journal of Wuhan University,2005,38( 5) :67-75. (in Chinese)]
[26]赵炼恒,李亮,杨峰,等.加筋土坡动态稳定性拟静力分析[J].岩石力学与工程学报,2009,28(9):1904-1917.
[ZHAO L H, LI L, YANG F. Dynamic stability pseudo-static analysis of reinforcement soil slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1904-1917. (in Chinese) ]
[27]何叔航.加筋二级边坡极限分析方法研究[J].公路工程,2012,37(3):89-92.
[HE S H. Study of critical height for two-steps reinforcement soil slope based on limit analysis[J]. Highway Engineering, 2012,37(3):89-92.(in Chinese) ]

相似文献/References:

[1]姜玉平,陈征宙,毕 港,等.基于极限分析法的边坡临界高度及稳定性研究[J].水文地质工程地质,2012,39(2):43.
 JIANG Yu-ping,CHEN Zheng-zhou,BI Gang,et al.Research on critical height and stability of slopes based on upper bound limit analysis method[J].Hydrogeology & Engineering Geology,2012,39(04):43.
[2]陈继彬,赵其华,彭社琴,等.塑料排水板处理后软土地基临界高度研究[J].水文地质工程地质,2014,41(1):84.
 [J].Hydrogeology & Engineering Geology,2014,41(04):84.

备注/Memo

备注/Memo:
收稿日期: 2017-11-20; 修订日期: 2017-12-12
基金项目: 湖南省自然科学基金项目资助(2017JJ2110)
第一作者: 胡卫东(1976-),男,博士,副教授,主要从事边坡稳定性、支挡结构土压力等方面的研究与教学工作。E-mail: huweidong506@163.com
更新日期/Last Update: 2018-07-15