[1]赵小二,常勇,吴吉春,等.穿透曲线随流量升高的变化特征及预测[J].水文地质工程地质,2018,45(04):21.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.04]
 ZHAO Xiaoer,CHANG Yong,WU Jichun,et al.Change characteristics of breakthrough curves with increasing flow rate and prediction[J].Hydrogeology & Engineering Geology,2018,45(04):21.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.04]
点击复制

穿透曲线随流量升高的变化特征及预测()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
21
栏目:
水 文 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Change characteristics of breakthrough curves with increasing flow rate and prediction
文章编号:
1000-3665(2018)04-0021-10
作者:
赵小二常勇吴吉春彭伏
南京大学地球科学与工程学院,江苏,南京210023
Author(s):
ZHAO Xiaoer CHANG Yong WU Jichun PENG Fu
School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
关键词:
流量变化穿透曲线影响预测
Keywords:
flow rate variation breakthrough curve effect prediction
分类号:
P641.134;P641.3
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.04
文献标志码:
A
摘要:
为了研究流量条件对岩溶管道溶质运移的影响,设计9种不同管道流量进行示踪实验,发现随着流量升高,峰值浓度逐渐增大,穿透曲线(BTC)拖尾逐渐缩短,弥散系数基本不变。在3种管道结构中,单管峰值浓度随流量升高增加的速度最快,不对称水箱峰值浓度随流量升高增加的速度最慢。相比单管道,对称水箱导致溶质瞬态存储在漩涡中明显滞后,不对称水箱导致主体溶质滞后穿透以及部分溶质瞬态存储在漩涡中滞后运移。根据中间7种流量的实验数据,拟合得到BTC特征参数与峰值时间的关系式和特征参数与流量的关系式。采用2种方法预测最大和最小流量条件下的BTC特征参数:根据流量预测峰值时间,接着根据峰值时间预测其他特征参数;分别根据流量预测多个特征参数。结果表明方法2的预测效果较好,但在野外条件下方法1有优势。
Abstract:
In order to investigate the effect of flow variation on solute transport in the conduit, the tracer experiments were conducted under 9 different flow rates. The experimental results show that the peak concentration increases and the tailing of breakthrough curve (BTC) decreases while the dispersion coefficient is basically unchanged with the increasing flow rate. With the increasing flow rate, the increase of the peak concentration is the fastest for the single pipe and the increase of peak concentration is the slowest for the asymmetrical pool. The symmetrical pool induces appreciable tracer retention (significant tailing of the BTC) due to transient storage in eddies. The asymmetrical pool causes slow penetration of the main tracer cloud (later arrival of the entire BTC) due to flow reversals in the pool and creates the tracer intention (tailing of the BTC) by transient storage in the pool. The relationship between the morphological parameters of BTCs and peak time and the relationship between the parameters and flow rate were developed based on the experimental data obtained under flow rates 2-8. We used two modes to predict the morphological parameters of BTCs under the maximum and minimum discharge: Mode 1, predicting peak time according to the flow rate and then predict other parameters according to peak time; mode 2, predicting all morphological parameters according to the flow rate. It is found that the prediction effect is better in the second mode, but the first mode has the advantages in field conditions.

参考文献/References:

[1]Goldscheider N, Meiman J, Pronk M, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of speleology, 2008, 37(1): 3.
[2]Schmid B H. Can longitudinal solute transport parameters be transferred to different flow rates?[J]. Journal of Hydrologic Engineering, 2008, 13(6): 505-509.
[3]Morales T, de Valderrama I F, Uriarte J A, et al. Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves[J]. Journal of hydrology, 2007, 334(1): 183-198.
[4]Massei N, Wang H Q, Field M S, et al. Interpreting tracer breakthrough tailing in a conduit-dominated karstic aquifer[J]. Hydrogeology Journal, 2006, 14(6): 849-858.
[5]Morales T, Uriarte J A, Olazar M, et al. Solute transport modelling in karst conduits with slow zones during different hydrologic conditions[J]. Journal of hydrology, 2010, 390(3): 182-189.
[6]G ppert N, Goldscheider N. Solute and colloid transport in karst conduits under low-and high-flow conditions[J]. Groundwater, 2008, 46(1): 61-68.
[7]Dewaide L, Bonniver I, Rochez G, et al. Solute transport in heterogeneous karst systems: dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (one-dimensional transport with inflow and storage) program[J]. Journal of Hydrology, 2016, 534: 567-578.
[8]赵小二, 常勇, 彭伏, 等. 水箱-管道系统溶质运移实验研究及其岩溶水文地质意义[J]. 吉林大学学报(地球科学版), 2017, 47 (4): 1219-1228.
[ZHAO X E, CHANG Y, PENG F, et al. Experimental study of solute transport in pool-pipe system and its significance on karst hydrogeology[J]. Journal of Jilin University(Earth Science Edition), 2017(4): 1219-1228.(in Chinese)]
[9]ZHAO X, CHANG Y, WU J C, et al. Laboratory investigation and simulation of breakthrough curves in karst conduits with pools[J]. Hydrogeology Journal, 2017, 25(8): 2235-2250.
[10]陈崇希. 岩溶管道一裂隙一孔隙三重空隙介质地下水流模型及模拟方法研究[J]. 地球科学, 1995, 20(4): 361-366.
[CHEN C X. Groundwater flow model and simulation method in triple media of karstic tube-fissure-pore[J]. Earth Science, 1995, 20(4): 361-366. (in Chinese)]
[11]Benedict R P. Fundamentals of pipe flow[M]. Chichester: Wiley, 1980.
[12]Field M S, Nash S G. Risk assessment methodology for karst aquifers:(1): Estimating Karst Conduit-Flow Parameters[J]. Environmental Monitoring and Assessment, 1997, 47(1): 1-21.
[13]Field M S. Risk assessment methodology for karst aquifers:(2) solute-transport modeling[J]. Environmental Monitoring and Assessment, 1997, 47(1): 23-37.
[14]Field M S. The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems[M]. Washington: US Environmental Protection Agency, 2002.
[15]Field M S, Pinsky P F. A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers[J]. Journal of Contaminant Hydrology, 2000, 44(3): 329-351.
[16]陈余道, 程亚平, 王恒, 等. 岩溶地下河管道流和管道结构及参数的定量示踪:以桂林寨底地下河为例[J]. 水文地质工程地质, 2013, 40(5): 11-15.
[CHEN Y D, CHENG Y P, WANG H, et al. Quantitative tracing study of hydraulic and geometric parameters of a karst underground river: exemplified by the zhaidi underground river in Guilin[J]. Hydrogeology & Engineering Geology, 2013, 40(5): 11-15. (in Chinese)]
[17]Chatwin P C. On the interpretation of some longitudinal dispersion experiments[J]. Journal of Fluid Mechanics, 1971, 48(4): 689-702.
[18]Taylor G. The dispersion of matter in turbulent flow through a pipe[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1954, 223(1155): 446-468.
[19]Davis P M, Atkinson T C, Wigley T M L. Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, UK[J]. Hydrology and Earth System Sciences Discussions, 2000, 4(3): 355-371.
[20]Day T J. Longitudinal dispersion in natural channels[J]. Water Resources Research, 1975, 11(6): 909-918.
[21]NAUMAN E B. Residence time distributions and micromixing[J]. Chemical Engineering Communications, 1981, 8(1/3): 53-131.
[22]Hart J R, Guymer I, Sonnenwald F, et al. Residence time distributions for turbulent, critical, and laminar pipe flow[J]. Journal of Hydraulic Engineering, 2016, 142(9): 04016024.
[23]Levenspiel O. Chemical reaction engineering[J]. Industrial & Engineering Chemistry Research, 1999, 38(11): 4140-4143.
[24]Jobson H E. Predicting travel time and dispersion in rivers and streams[J]. Journal of Hydraulic Engineering, 1997, 123(11): 971-978.
[25]Hauns M, Jeannin P Y, Atteia O. Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits[J]. Journal of Hydrology, 2001, 241(3): 177-193.
[26]Brouyère S. A quantitative point of view of the concept of vulnerability[J]. Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, COST620 final report, 2004: 10-15.
[27]Goldscheider N, Drew D. 岩溶水文地质学方法[M]. 陈宏峰,等, 译. 北京: 科学出版社, 2015.
[Goldscheider N, Drew D. Karst hydrogeology method[M]. CHEN H F, et al, trs. Beijing: Science Press, 2015. (in Chinese)]
[28]Fischer H B. The mechanics of dispersion in natural streams[J]. Journal of the Hydraulics division, 1967, 93(6): 187-216.

相似文献/References:

[1]张学羿,窦智.黏土微观孔隙结构对可溶性污染物运移的影响[J].水文地质工程地质,2018,45(04):157.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.23]
 ZHANG Xueyi,DOU Zhi.Influence of microscopic pore structure of clay on soluble contaminant transport[J].Hydrogeology & Engineering Geology,2018,45(04):157.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.23]

备注/Memo

备注/Memo:
收稿日期: 2017-10-10; 修订日期: 2017-12-10
基金项目: 国家自然科学基金项目 (U1503282;41602242);国家重点研发计划专题 (2016YFC040280901)
第一作者: 赵小二(1989-),男,博士研究生,主要从事岩溶地区溶质运移研究。E-mail:zxe7866321@126.com
更新日期/Last Update: 2018-07-15