[1]朱晛亭,黄景春,宁立波,等.裂隙岩体内凝结水时空分布规律——以宜阳锦屏山为例[J].水文地质工程地质,2018,45(04):1.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.01]
 ZHU Xianting,HUANG Jingchun,NING Libo,et al.Temporal and spatial distribution of condensate water in fractured rock mass: a case study in the Jinping Mountain of Yiyang County[J].Hydrogeology & Engineering Geology,2018,45(04):1.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.01]
点击复制

裂隙岩体内凝结水时空分布规律——以宜阳锦屏山为例()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年04期
页码:
1
栏目:
水 文 地 质
出版日期:
2018-07-15

文章信息/Info

Title:
Temporal and spatial distribution of condensate water in fractured rock mass: a case study in the Jinping Mountain of Yiyang County
文章编号:
1000-3665(2018)04-0001-06
作者:
朱晛亭1黄景春2宁立波1李喆2
1.中国地质大学(武汉)环境学院,湖北 武汉430074;2.河南省地质环境监测院,河南 郑州450016
Author(s):
ZHU Xianting1 HUANG Jingchun2 NING Libo1 LI Zhe2
1.School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Hubei430074, China; 2.Geological Environmental Monitoring Institute of Henan, Zhengzhou, Henan450016, China
关键词:
裂隙岩体凝结水时空分布规律锦屏山
Keywords:
fractured rock mass condensate water temporal and spatial distribution Jinping Mountain
分类号:
P641.135; X143
DOI:
10.16030/j.cnki.issn.1000-3665.2018.04.01
文献标志码:
A
摘要:
为探索裂隙岩体内凝结水的时空分布规律,以宜阳锦屏山为研究区,监测夏冬两季研究区不同方位裂隙岩体内不同孔深位置处的空气温湿度数据,并分析其绝对湿度与相对湿度。监测数据显示相对湿度多时段连续达到饱和状态。时间上,夏、冬两季各壁面裂隙岩体内均有凝结水形成,夏季比冬季更易形成凝结水,冬季夜晚较白天更易形成凝结水;空间上,研究区裂隙岩体内凝结水分布情况受温度、水分分布及运移传递规律影响,除东、南两壁受冬季西北风的影响,壁面高位置处受太阳辐射较强,部分汽态水向低位置处运移,使得高处凝结水分布范围比低处小。夏季岩体内部凝结水区域外边界在孔深20~50 cm,冬季约在100~200 cm。
Abstract:
The distribution of condensate water in fractured rock mass can be used in many fields, such as agriculture, forestry, civil engineering and environment. In order to explore the temporal and spatial distribution of condensate water in fractured rock mass, temperature and humidity at different depths in different positions of fractures in the Jinping Mountain of Yiyang County are monitored in summer and winter. The absolute humidity and relative humidity are analyzed. The monitoring data show that the relative humidity reaches the saturation state for more than a period of time. In time, the condensate water occurs in both the summer and winter. It is more likely to produce condensate water in summer and in the night time in winter. In space, the distribution of condensate water in the fractured rocks in the study area is affected by the distribution and migration of temperature and moisture. In addition to the eastern and southern walls affected by the northwestern wind in winter, the solar radiation of the high position of the wall is so stronger that some of the vapor water moving to the low position, which makes the distribution of condensate water at the height higher than the low position. The boundary of the condensate water area in summer is around 20~50 cm deep in the hole and about 100~200 cm in winter.

参考文献/References:

[1]杨冰冰,夏汉平,黄娟,等.采石场石壁生态恢复研究进展[J].生态学杂志, 2005(2):181-186.
[YANG B B, XIA H P, HUANG J, et al. Advances in ecological restoration of quarry escarpment[J].Chinese Journal of Ecology,2005(2):181-186.(in Chinese)]
[2]张傲,方云,陈建平,等.凝结水对碳酸盐岩溶蚀实验及数值模拟分析[J].岩石力学与工程学报,2014,33(增刊2):3648-3656.
[ZHANG A, FANG Y, CHEN J P, et al. Dissolution experiment and numerical simulation analysis for condensation water on carbonate rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup2):3648-3656.(in Chinese)]
[3]郭占荣,韩双平.西北干旱地区凝结水试验研究[J].水科学进展,2002(5):623-628.
[GUO Z R, HAN S P. Experimental study on the condensation water in arid area, northwestern China[J]. Advances in Water Science, 2002(5):623-628.(in Chinese)]
[4]杨善龙,王旭东,郭青林,等.敦煌莫高窟崖体中水分分布初步分析[J].水文地质工程地质,2009,36(5):94-97.
[YANG S L, WANG X D, GUO Q L, et al. Preliminary analysis of moisture distribution in cliff rocks of the Mogao grottoes in Dunhuang[J]. Hydrogeology & Engineering Geology, 2009, 36(5):94-97.(in Chinese)]
[5]李红寿,汪万福,郭青林,等.敦煌莫高窟干旱地区水分凝聚机理分析[J].生态学报,2009,29(6):3198-3205.
[LI H S, WANG W F, GUO Q L, et al. Mechanism analysis on water cohesion in arid area of Dunhuang Mogao Grottoes[J]. Acta Ecologica Sinica,2009,29(6):3198-3205.(in Chinese)]
[6]万力,曹文炳,王旭升,等.云冈石窟水汽转化特征的初步研究[J].工程勘察,2012(11):6-11.
[WAN L, CAO W B, WANG X S, et al. Preliminary investigation on water-vapor transfer in Yungang Grottoes[J]. Geotechnical Investigation & Surveying, 2012(11):6-11.(in Chinese)]
[7]李华翔,宁立波,黄景春,等. 裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例[J]. 水文地质工程地质,2017,44(6):9-14.
[LI H X, NING L B, HUANG J C, et al. A study of the distribution of temperature-humidity and vapor-liquid transformation in the water vapor field of fractured rock mass: a case study in the Jinping Mountain of Yiyang county in Henan[J]. Hydrogeology & Engineering Geology,2017,44(6):9-14.(in Chinese)]
[8]Freitas C R D, Schmekal A. Condensation as a microclimate process: measurenment, numerical simulation and prediction in the glowworm cave, New Zealand[J]. International Journal of Climatology, 2003,23(5):557-575.
[9]Salve R, Kneafsey T J. Vapor-phase transport in the near-drift environment at Yucca Mountain[J]. Water Resources Research, 2005(2):10-12.
[10]Fernandez-Cortes, Benavente, Cuezva. Effect of Water Vapour Condensation on the Radon Content in Subsurface Air in a Hypogeal Inactive-volcanic Environment in Galdar Cave, Spain[J]. Atmospheric Environment, 2013(8):15-23.
[11]严家騄,余晓福,王永青,等.水和水蒸气热力学性质图表[M].北京:高等教育出版社,2004:1-11.
[YAN J L, YU X F, WANG Y Q, et al. Water and steam thermodynamic properties chart[M]. Beijing: Higher Education Press, 2004:1-11.(in Chinese)]
[12]崔海宁.热力学系统理论[M].长春:吉林大学出版社,2009: 69-72.
[CUI H N. Theory of thermodynamic system[M]. Changchun: Jilin University Press, 2009:69-72.(in Chinese)]
[13]谢锐生. 热力学原理[M].北京:人民教育出版社,1980: 6-10.
[XIE R S. Thermodynamic principles[M]. Beijing: People’s Education Press, 1980:6-10. (in Chinese)]
[14]邹邦银.热力学与分子物理学[M].武汉:华中师范大学出版社,2004:168-170.
[ZOU B Y. Thermodynamics and Molecular Physics[M]. Wuhan: Huazhong Normal University Press, 2004: 168-170. (in Chinese)]

相似文献/References:

[1]张莉丽,张辛,王云,等.非常低延展性裂隙岩体REV存在性研究[J].水文地质工程地质,2011,38(5):20.
 ZHANG Li-li,ZHANG Xin,WANG Yun,et al.Determining of the REV for fracture rock mass of very low ductility[J].Hydrogeology & Engineering Geology,2011,38(04):20.
[2]李国庆,马凤山,邓清海,等.基于裂隙量测法的新立矿区工程岩体渗透性分析[J].水文地质工程地质,2008,35(2):54.
 LI Guo-qing~,MA Feng-shan~,DENG Qing-hai~,et al.Seepage characteristic of rock mass in the Xinli mining area based on fracture geometry measurement method[J].Hydrogeology & Engineering Geology,2008,35(04):54.
[3]邵新民,于得胜,王蓓.新疆乌拉泊水均衡试验场凝结水对地下水补给的观测研究[J].水文地质工程地质,2012,39(2):7.
 Shao Xin-min,Yu De-sheng,Wang Bei.Research on the observation of condensed recharge in a water balance field of Urab Xinjiang province[J].Hydrogeology & Engineering Geology,2012,39(04):7.
[4]李华翔,宁立波,黄景春,等.裂隙岩体水汽场内温湿度分布及汽液转化规律研究——以河南省宜阳锦屏山为例[J].水文地质工程地质,2017,44(6):9.
 LI Huaxiang,NING Libo,HUANG Jingchun,et al.A study of the distribution of temperature-humidity and vapor-liquid transformation in the water vapor field of fractured rock mass: a case study in the Jinping Mountain of Yiyang county in Henan[J].Hydrogeology & Engineering Geology,2017,44(04):9.

备注/Memo

备注/Memo:
收稿日期: 2017-12-05; 修订日期: 2018-01-08
基金项目: 国家自然科学基金(51109192)
第一作者: 朱晛亭(1994-),女,主要从事水文地质、环境地质、生态地质的研究。E-mail:1143107431@qq.com
通讯作者: 黄景春(1976-),男,主要从事环境地质、生态地质的研究。E-mail:474045985@qq.com
更新日期/Last Update: 2018-07-15