[1]延恺,谷天峰,王家鼎,等.基于显微CT图像的黄土微结构研究[J].水文地质工程地质,2018,45(03):71.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.09]
 YAN Kai,GU Tianfeng,WANG Jiading,et al.A study of the micro-configuration of loess based on micro-CT images[J].Hydrogeology & Engineering Geology,2018,45(03):71.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.09]
点击复制

基于显微CT图像的黄土微结构研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年03期
页码:
71
栏目:
工 程 地 质
出版日期:
2018-05-15

文章信息/Info

Title:
A study of the micro-configuration of loess based on micro-CT images
文章编号:
1000-3665(2018)03-0071-07
作者:
延恺谷天峰王家鼎刘亚明王潇王晨兴
西北大学地质学系/大陆动力学国家重点实验室,陕西 西安710069
Author(s):
YAN Kai GU Tianfeng WANG Jiading LIU Yaming WANG Xiao WANG Chenxing
Department of Geology/State Key Laboratory of Continental Dynamics,Northwest University,Xi’an,Shaanxi710069,China
关键词:
黄土微结构显微CT孔隙三维图像重建
Keywords:
loess micro-structure micro-CT pore 3D image reconstruction
分类号:
TU411.92
DOI:
10.16030/j.cnki.issn.1000-3665.2018.03.09
文献标志码:
A
摘要:
黄土的工程性质与黄土的微结构特性密切相关。为了研究马兰黄土的二维孔隙特征和三维结构表征,实验土样用显微CT进行扫描,并重建三维图像。首先利用高斯滤波对切片图像进行降噪处理,接着用二值法对灰度图像进行统计得到二维孔隙特征,在此基础上重建三维图像,分别提取切块、团聚体和土颗粒的三维图像,得到它们的三维结构表征。研究结果如下:(1)对二维孔隙面积进行计数分析,土样的孔隙面积集中在0~2 000 μm2范围内;通过比较孔隙面积与总数的关系,可知中孔隙对土体的性质影响最大;对不同层面的孔隙比对比后,发现土体的孔隙分布在宏观上可视为均一的,微观上在土体的不同部位分布是不同的。(2)通过对三维图像进行分析,得到团聚体中土颗粒间有4种组合关系,分别为接触、连接、穿插和融合关系;土颗粒形态可分为4类,分别是椭球形、锥形、片形和条形。
Abstract:
The physical and engineering properties of loess have close relationships with the characteristics of its micro-structures. The micro-CT experiments were performed for reconstruction of 3D images to illuminate the 2D pore characteristics and 3D structure characterization of the Malan loess. Firstly, slice images were corrected through the Gaussian filtering and gray images were obtained with the binary method for 2D pore characteristics. Moreover, 3D images were reconstructed in accordance with the analysis of the 3D structure characterization, which was summarized by the 3D chop, aggregate and particle.The research results show that (1) as the results of 2D pore area counting analysis, the pore areas of the soil sample tend to concentrate in the range of 0~2 000 μm2. Comparing the total number with the area of pore, it can be concluded that the medium-sized pores play an important role in the soil properties formation. It is also found that the soil pore distribution on the macro level can be regarded as uniform after comparing different layer numbers of void ratio. However, its distribution in different parts of the soil is different from a micro level.(2) Depending on the analysis of the 3D images, it is found that there are four combination relationships among the soil particles in the internal of aggregate: contact, connection, penetration and fusion, and the soil particle morphology can be classified into four shapes: spheroidicity, cone, sheet and bar.

参考文献/References:

[1]D Wildenschild, CMP Vaz, M L Rivers, et al. Using X-ray computed tomography in hydrology: systems, resolution and limitation[J]. Journal of Hydrology, 2002, 267(3-4): 285-297
[2]谷天峰, 王家鼎, 郭乐,等. 基于支持向量机的Q3黄土孔隙微观结构研究[J]. 水文地质工程地质, 2010, 37(6): 102-106.
[GU T F, WANG J D, GUO L, et al. Research on mesoscopic pore of loess based on image processing of SVM[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 102-106.(in Chinese)]
[3]谷天峰, 王家鼎, 郭乐, 等. 基于图像处理的Q3黄土的微观结构变化研究[J]. 岩石力学与工程报, 2011, 30(增刊1): 3185-3192.
[GU T F, WANG J D, GUO L, et al. Study of Q3 loess microstructure changes based on image processing[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 1): 3185-3192.(in Chinese)]
[4]王家鼎, 袁中夏, 任权. 高速铁路地基黄土液化前后微观结构变化研究[J]. 西北大学学报(自然科学版), 2009, 39(3): 480-483.
[WANG J D, YUAN Z X, REN Q. A study on loess microstructure pre and post liquefaction of high-speed railway foundation[J]. Journal of Northwest University(Natural Science Edition), 2009, 39(3): 480-483. (in Chinese)]
[5]任权, 王家鼎, 谷天峰, 等. 滑带黄土孔隙微结构参数与动应力关系研究[J]. 水土保持通报, 2013, 33(1): 103-105.
[REN Q, WANG J D, GU T F, et al. Relationships between porosity micro-structure parameters of slide-zone soil and dynamic stress[J]. Bulletin of Soil and Water Conservation,2013, 33(1): 103-105. (in Chinese)]
[6]任权, 王家鼎, 谷天峰, 等. 列车长持时振动引起黄土滑坡微结构变化研究[J]. 水文地质工程地质, 2013, 40(4): 117-120.
[REN Q, WANG J D, GU T F, et al. Research on the micro-structure change in the slide-zone soil in loess landslide caused by train-induced long-term vibration[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 117-120. (in Chinese)]
[7]任权,王家鼎,袁中夏,等.高速铁路地基黄土微结构的分形研究[J].水文地质工程地质,2007,34(6):76-78.
[REN Q, WANG J D, YUAN Z X, et al. Fractal study on loess microstructure of one high-speed railway foundation[J]. Hydrogeology & Engineering Geology, 2007,34(6): 76-78. (in Chinese)]
[8]薛武海, 王桂生, 陈志新. 黄土微结构区域变化规律及与湿陷性相关性研究[J]. 地下水, 2005, 27(4): 310-312.
[XUE W H, WANG G S, CHEN Z X. Study on the relativities between area variation regulation and the humid and sank characters of the loessial micro-configuration[J]. Ground water, 2005, 27(4): 310-312. (in Chinese)]
[9]田华, 张水昌, 柳少波, 等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报, 2012, 33(3): 419-427.[Determination of organic-rich shale pore features injection and gas adsorption methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. (in Chinese)]
[10]冯杰, 于纪玉. 利用CT扫描技术确定土壤大孔隙分形维数[J]. 灌溉排水学报, 2005, 24(4): 26-28.
[FENG J, YU J Y. Effect on soil wetting pattern caused by emitter discharge and spacing for layered soil in sunshine greenhouse[J]. Journal of Irrigation and Drainage, 2005, 24(4): 26-28. (in Chinese)]
[11]何娟, 刘建立, 吕菲. 基于CT数字图像的土壤孔隙分形特征研究[J]. 土壤, 2008, 40(4): 662-666.
[HE J, LIU J L, LYU F. Characterizing fractal characteristics of soil pores based on high-resolution digital CT images[J]. Soils, 2008, 40(4): 662-666. (in Chinese)]
[12]李德成, 李忠佩, Velde B, 等. 不同利用年限的红壤水稻土孔隙结构差异的图像分析[J]. 土壤, 2002, 34(3): 134-137.
[LI D C, LI Z P, Velde B, et al. Image analysis of different utilized years of red paddy soil difference structure[J]. Soils, 2002, 34(3): 134-137. (in Chinese)]
[13]B Velde, Surface cracking and aggregate formation observed in a Rendzina soil[J]. Geoderma, 2001, 99(3/4): 261-276.
[14]周虎, 李文昭, 张中彬, 等. 利用X射线CT研究多尺度土壤结构[J]. 土壤学报, 2013, 50(6): 1226-1230.
[ZHOU H, LI W Z, ZHANG Z B, et al. Characterization of multi-scale soil structure with X-ray computed tomography[J]. Acta Pedologica Sinica, 2013, 50(6): 1226-1230. (in Chinese)]
[15]李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报, 2010, 32(11): 1703-1708.
[LI J S, WANG D, KANG T H. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708. (in Chinese)]
[16]陈功, 罗守华, 董歌, 等. 一种新的显微CT系统设计及实验研究[J].中国医疗设备,2009,24(4): 60-62.
[CHEN G, LUO S H, DONG G, et al. System design and experimental study of a new micro-CT[J]. China Medical Devices, 2009, 24(4): 60-62. (in Chinese)]
[17]D Wildenschild, C M P Vaz, M L Rivers, et al. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations[J]. Journal of Hydrology, 2002, 267(3/4): 285-297.
[18]Lifang Luo, Henry Lin, Shuangcai Li. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography[J]. Journal of Hydrology, 2010, 393(1/2): 53-64.
[19]Hu Zhou, Huan Fang, Sacha Jon Mooney, et al. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies[J]. Geoderma, 2016, 266(1): 66-74.
[20]Olivier Rozenbaum, Ary Bruand, Emmanuel Le Trong. Soil porosity resulting from the assemblage of silt grains with a clay phase: New perspectives related to utilization of X-ray synchrotron computed microtomography[J]. Comptes Rendus Geoscience, 2012, 344(10): 516-525.
[21]Muhammad Naveed, Per Schjnning, Thomas Keller, et al. Quantifying vertical stress transmission and compaction-induced soil structure using sensor mat and X-ray computed tomography[J]. Soil and Tillage Research, 2016, 158(1): 110-122.
[22]Rolf Tippktter, Thilo Eickhorst, Heidi Taubner, et al. Detection of soil water in macropores of undisturbed soil using microfocus X-ray tube computerized tomography (μCT)[J]. Soil and Tillage Research, 2009, 105(1): 12-20.
[23]Sheela Katuwal, Trine Norgaard, Per Moldrup, et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography[J]. Geoderma, 2015, 237/238(1): 9-20.
[24]Renming Ma, Chongfa Cai, Zhaoxia Li, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil and Tillage Research, 2015, 149(1): 1-11.
[25]赵冬, 许明祥, 刘国彬, 等. 用显微CT研究不同植被恢复模式的土壤团聚体微结构特征[J]. 农业工程学报, 2016, 32(9): 123-129.
[ZHAO D, XU M X, LIU G B, et al. Characterization of soil aggregate microstructure under different revegetation types using micro-computed tomography[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 123-129. (in Chinese)]
[26]李文昭, 周虎, 陈效民, 等. 基于同步辐射显微CT研究不同施肥措施下水稻土团聚体微结构特征[J]. 土壤学报,2014, 51(1): 67-74.
[LI W Z, ZHOU H, CHEN X M, et al. Characterization of aggregate microstructures of paddy soils under different patterns of fertilization with synchrotron radiation micro-CT[J]. Acta Pedologica Sinica, 2014, 51(1): 67-74. (in Chinese)]
[27]谌恬.基于显微CT图像的岩芯孔隙结构表征和验证[D]. 成都: 电子科技大学, 2014.
[SHEN T. Research and design of fractional order pid control based on permanent magnet synchronous machine[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese)]
[28]高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学,1980(12):1203-1208;1237-1240.
[GAO G R. The loess collapsibility and microstructure classification[J]. Scientia Sinica, 1980(12):1203-1208;1237-1240. (in Chinese)]
[29]高国瑞. 中国黄土的微结构[J]. 科学通报, 1980(20):945-948.
[GAO G R. The microstructures of loess in China[J]. Chinese Science Bulletin, 1980(20):945-948. (in Chinese)]
[30]高国瑞. 兰州黄土显微结构和湿陷机理的探讨[J]. 兰州大学学报,1979(2):123-134.
[GAO G R. The discussion of Lanzhou loess microstructure and collapse cause[J]. Journal of Lanzhou University, 1979(2):123-134. (in Chinese)]
[31]王永焱, 吴在宝, 岳乐平. 兰州黄土的生成时代及结构特征[J]. 西北大学学报(自然科学版), 1978(2): 3-29.
[WANG Y Y, WU Z B, YUE L P. The formation era and structural characteristics of Lanzhou loess[J]. Journal of Northwest University(Natural Science Edition), 1978(2): 3-29. (in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2017-10-16; 修订日期: 2017-12-13
基金项目: 国家自然科学基金项目资助 (41772285)
第一作者: 延恺(1991-),男,硕士研究生,研究方向为工程地质与地质灾害防治。E-mail:415975941@qq.com通讯作者: 谷天峰(1978-),男,副教授,主要从事黄土地质灾害研究。E-mail:gutf@nwu.edu.cn
更新日期/Last Update: 2018-05-15