[1]李超峰,虎维岳.回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J].水文地质工程地质,2018,45(03):1.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.01]
 LI Chaofeng,HU Weiyue.Prediction method of mine water inflow regime from a layered extra-thick aquifer[J].Hydrogeology & Engineering Geology,2018,45(03):1.[doi:10.16030/j.cnki.issn.1000-3665.2018.03.01]
点击复制

回采工作面顶板复合含水层涌水量时空组成及过程预测方法()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年03期
页码:
1
栏目:
水 文 地 质
出版日期:
2018-05-15

文章信息/Info

Title:
Prediction method of mine water inflow regime from a layered extra-thick aquifer
文章编号:
1000-3665(2018)03-0001-13
作者:
李超峰123虎维岳23
1.煤炭科学研究总院,北京100013;2.中煤科工集团西安研究院有限公司,陕西 西安710077;3.陕西省煤矿水害防治技术重点实验室,陕西 西安710077
Author(s):
LI Chaofeng123 HU Weiyue23
1.China Coal Research Institute, Beijing100013, China; 2.Xi’an Research Institute, China Coal Technology and Engineering Group Corp, Xi’an, Shaanxi710077, China; 3.Shaanxi Key Laboratory of Coal Mine Hazard Prevention and Control Technology, Xi’an, Shaanxi710077, China
关键词:
复合含水层向河渠排泄工作面模型时空动态涌水量预测法
Keywords:
multilayer aquifer drainage to a river working face model inflow prediction method combing dynamic recharge and release of static reserves
分类号:
P641.4+1;TD742
DOI:
10.16030/j.cnki.issn.1000-3665.2018.03.01
文献标志码:
A
摘要:
为提高彬长矿区各矿井预测涌水量的准确性,通过精细化勘探将洛河组划分为上、下两段;建立了巨厚复合含水层涌水量预测的水文地质概念模型,将受到煤层采后顶板导水裂缝带波及的含水层涌水概化为考虑垂向渗流的向河渠排泄模型,称之为“含水层水向工作面涌水模型”;并给出了与矿井采掘计划相结合、考虑含水层静储量释放、动态补给和垂向渗流的水量预测方法,称之为“工作面时空动态涌水量预测方法”。以高家堡矿井为例,预测101工作面最大涌水量为1 222.11 m3/h,采后初期稳定涌水量为950.07 m3/h;预测201工作面最大涌水量为610.93 m3/h,采后初期稳定涌水量为536.73 m3/h。与实测涌水量对比分析,预测涌水量绝对误差为-130.49~20.64 m3/h,误差率为-21.05%~8.39%,预测精度大大提升。
Abstract:
In order to improve the accuracy of prediction of water inflow in mines in the Binchang mining area, the Luohe formation can be divided into the upper and lower aquifers based on hydrogeological supplementary exploration. A hydrogeological conceptual model of drainage to a river considering the vertical seepage for prediction of stratified water inflow of a giant thick aquifer, called “the model of aquifer water inflow to the working face”, is established. The prediction method combining the mine excavation plan and considering the release of the static reserves, the dynamic recharge and the vertical seepage of the aquifer, called “the prediction method of water inflow combining dynamic recharge and release of static reserves”, is given. As an examples, the maximum water inflow of the 101 working face of the Gaojiabu coal mine is predicted to be 1 222.11 m3/h, and the stable inflow in the early post-harvest period is 950.07 m3/h. The maximum water inflow of the 201 working face of the Gaojiabu coal mine is predicted to be 610.93 m3/h, and the stable inflow in the early post-harvest period is 536.73 m3/h. Compared with the real inflow, the accuracy of inflow prediction results are greatly improved, with the absolute error of inflow predicted of -130.49~20.64 m3/h and the error rate of -21.05%~8.39%.

参考文献/References:

[1]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿防治水规定[M].北京:煤炭工业出版社,2012.
[State Administration of Work Safety, State Administration of Coal Mine Safety. The regulation of water hazard prevention and control[M]. Beijing: China University of Mining and Technology Press, 2012. (in Chinese)]
[2]虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
[HU W Y. Theories and methods of mine water hazard prevention and control[M]. Beijing: China Coal Industry Publishing House,2005. (in Chinese)]
[3]杜敏铭,邓英尔,许模.矿井涌水量预测方法综述[J].地质学报,2009,29(1):70-73.
[DU M M, DENG Y E, XU M. Review of methodology for prediction of water yield of mine[J].ACTA Geologica Sinica,2009,29(1):70-73.(in Chinese)]
[4]陈酩知,刘树才,杨国勇.矿井涌水量预测方法的发展[J].工程地球物理学报,2009,6(1):69-72.
[CHEN M Z, LIU S C, YANG G Y. The development of mining water inflow predict method[J]. Chinese Journal of Engineering Geophysics,2009,6(1):69-72. (in Chinese)]
[5]管恩太,武强.矿井涌水量预测评述[J].中州煤炭,2005(1):7-8.
[GUAN E T, WU Q. An assessment of mining water inflow prediction[J]. Zhongzhou Coal, 2005(1):7-8. (in Chinese)]
[6]连会青,夏向学,徐斌,等.矿井涌水量预测方法及适用性评价[J].华北科技学院学报,2014,11(2):22-27.
[LIAN H Q, XIA X X, XU B, et al. Evaluation and applicability study on prediction methods of water inflow in mines[J]. Jounal of North China Institute of Science and Technology,2014,11(2):22-27. (in Chinese)]
[7]苗文韬,苗合坤,牛中平.矿井继生充水含水层的涌水特征及其水害防治措施[J].煤田地质与勘探,2013,41(2):47-50.
[MIAO W T, MIAO H K, NIU Z P. The water gushing features of non-native water-filled aquifer and methods for water prevention and control[J]. Coal Geology & Exploration,2013,41(2):47-50. (in Chinese)]
[8]虎维岳,闫丽.对矿井涌水量预测问题的分析与思考[J].煤炭科学技术,2016,44(1):13-18,38.
[HU W Y, YAN L. Analysis and consideration on prediction problems of mine water inflow volume[J]. Coal Science and Technology,2016,44(1):13-18,38. (in Chinese)]
[9]虎维岳.浅埋煤层回采中顶板含水层涌水量的时空动态预测技术[J].煤田地质与勘探,2016,44(5):92-96.
[HU W Y. Water inflows prediction technique of water inflow from roof aquifer during extraction of shallow seam[J]. Coal Geology & Exploration ,2016,44(5):92-96. (in Chinese)]
[10]张壮路.工作面顶板涌水量预测的渗流与应力耦合方法研究[D].西安:煤炭科学研究总院,2009.
[ZHANG Z L. Prediction of inflow in roof of working face by seepage-stress coupling model[D]. Xi’an: China Coal Research Institute, 2009. (in Chinese)]
[11]刘英锋,李超峰.陕西彬长胡家河矿业有限公司矿井首采区水文地质补充勘探报告[R].西安:中煤科工集团西安研究院有限公司,2014.
[LIU Y F, LI C F. Prospecting report on the hydrogeology in the first mining area of Hujiahe coal mine[R]. Xi’an: Xi’an Research Institute of China Coal Technology and Engineering Group Corp, 2014. (in Chinese)]
[12]李超峰. 高家堡矿井首采区白垩系含水层精细探查研究成果报告[R].西安:中煤科工集团西安研究院有限公司,2015.
[LI C F. Prospecting report on the hydrogeology of Luo-he aquifer in the first mining area of Gaojiabu coal mine[R]. Xi’an: Xi’an Research Institute of China Coal Technology and Engineering Group Corp, 2014. (in Chinese)]
[13]李超峰.近千米埋深煤层开采巨厚洛河组含水层水防控对策研究[C]//煤炭安全高效开采地质保障技术及应用.北京:煤炭工业出版社,2014:287-290.
[LI C F. Research on groundwater prevention and control of Luohe aquifer where the deep coal seams are mined at nearly a kilometer[C]//Technology and application of geological safeguard in coal safe and efficient mining. Beijing: China University of Mining and Technology Press, 2014:287-290. (in Chinese)]
[14]刘英锋,郭小铭.导水裂缝带部分波及顶板含水层条件下涌水量预测[J].煤田地质与勘探,2016,44(5):98-101.
[LIU Y F, GUO X M. Prediction of water inflow in roof aquifer affected by water-flowing fracture zone[J]. Coal Geology & Exploration,2016,44(5):98-101. (in Chinese)]
[15]刘英锋,王新.黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J].西安科技大学学报,2013,33(4):432-435.
[LIU Y F, WANG X. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi’an University of Science and Technology,2013,33(4):432-435. (in Chinese)]
[16]薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
[XUE Y Q. Groundwater dynamics[M]. Beijing: Geological Publishing House, 1986. (in Chinese)]
[17]陈崇希,唐仲华.地下水流动问题数值解法[M].武汉:中国地质大学出版社,1990.
[CHEN C X, TANG Z H. Numerical solution of groundwater flow problems[M]. Wuhan: China University of Geosciences Press,1990. (in Chinese)]
[18]武强,赵苏启,董书宁,等.煤矿防治水手册[M].北京:煤炭工业出版社,2013.
[WU Q, ZHAO S Q, DONG S N, et al. Handbook of mine water hazard prevention and control[M]. Beijing: China Coal Industry Publishing House, 2013. (in Chinese)]
[19]郭纯青,田西昭.岩溶隧道涌水量综合预测——以朱家岩岩溶隧道为例[J].水文地质工程地质,2011,38(3):1-8.
[GUO C Q, TIAN X Z. A comprehensive forecast of water inflow in karst tunnels——Exemplified by the Zhujiayan karst tunnel[J]. Hydrogeology & Engineering Geology,2011,38(3):1-8. (in Chinese)]
[20]高召宁,孟祥瑞,王向前,等.矿井涌水量时间序列的长程相关性分析及分维数估算[J].水文地质工程地质,2010,37(3):31-35.
[GAO Z N,MENG X R,WANG X Q,et al. Analysis of long-range correlation and fractal dimension estimation of time series of mining water inflow[J].Hydrogeology & Engineering Geology,2010,37(3):31-35. (in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2017-05-10; 修订日期: 2017-10-10
基金项目: 国家重点研发计划资助项目(2017YFC0804106);中煤科工集团西安研究院有限公司青年基金项目(2017XAYQN09)
第一作者: 李超峰(1983-),男,博士,助理研究员,从事水文地质及矿井水害防治技术研究。E-mail:lichaofeng@cctegxian.com
更新日期/Last Update: 2018-05-15