[1]黄海峰,巨能攀,黄敏,等.软岩非线性蠕变损伤模型及其试验研究[J].水文地质工程地质,2017,44(3):49-54.
 HUANG Haifeng,JU Nengpan,HUANG Min,et al.Nonlinear creep damage model of soft rock and its experimental study[J].Hydrogeology & Engineering Geology,2017,44(3):49-54.
点击复制

软岩非线性蠕变损伤模型及其试验研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
44卷
期数:
2017年3期
页码:
49-54
栏目:
OA栏目
出版日期:
2017-05-15

文章信息/Info

Title:
Nonlinear creep damage model of soft rock and its experimental study
作者:
黄海峰巨能攀黄敏张成强朱俊霖
成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都610059
Author(s):
HUANG Haifeng JU Nengpan HUANG Min ZHANG Chengqiang ZHU Junlin
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,Chengdu,Sichuan610059, China
关键词:
蠕变弹性模量黏滞系数蠕变损伤模型分数阶微积分
Keywords:
creep elastic modulus viscosity coefficient creep damage model fractional calculus
分类号:
TU458+.3
文献标志码:
A
摘要:
为了反映软岩蠕变全过程,进行红层泥岩蠕变力学试验,试验发现弹性模量随时间的增长而逐渐衰减,黏滞系数在应力恒定且并未达到屈服应力的情况下,随时间的增长而逐渐增大。因此认为传统理论流变力学中的蠕变损伤处理方法不适用于将黏滞系数进行损伤演化,故引入分数阶微积分来描述软岩蠕变的黏弹性和黏塑性应变。通过构建一个考虑蠕变时效损伤的弹性体,并将其与基于分数阶微积分的黏滞和黏塑性体进行串联,从而建立一个新的非线性蠕变损伤模型。依据红层泥岩和相关文献中冻结软岩及红砂岩的蠕变试验数据,通过该软岩蠕变损伤模型对其进行辨识,充分显示出所建模型的合理性和适用性。
Abstract:
In order to reflect the whole process of soft rock creep, the red mudstone creep experiment is carried out. The experimental results show that the elastic modulus gradually decreases with the increasing time and the viscosity coefficient gradually increases with the increasing time under the constant stress before yield. Therefore, this paper argues that the processing method of creep damage in the traditional theoretical rheology is not applicable to the damage evolution of the viscous coefficient, and the fractional calculus is used to describe the viscoelastic and viscoplastic strain of soft rock creep. By constructing an elastic body based on time-dependent damage, which is in series with a viscous body and a viscoplastic body based on fractional calculus, a new nonlinear creep damage model is established. The creep test data of red mudstone, frozen soft rock and red sandstone are identified with the creep damage model of soft rock, and the rationality and applicability of the proposed model is shown.

参考文献/References:

[1]孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.
[SUN J. Rheology of geo-material and its engineering application[M]. Beijing: China Architecture and Building Press, 1999.(in Chinese)]
[2]刘正, 高文华, 刘栋,等. 深部围岩流变特性试验研究及其模型辨识[J]. 水文地质工程地质, 2012, 39(4):43-48.
[LIU Z, GAO W H, LIU D, et al. An experimental study of the creep properties of deep surrounding rocks and creep model identification[J]. Hydrogeology & Engineering Geology, 2012, 39(4):43-48. (in Chinese)]
[3]李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(3):398-403.
[LI D W, WANG R H, FAN J H. Nonlinear rheological model for frozen soft rock during Cretaceous period[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3):398-403. (in Chinese)]
[4]Ping C, Wen Y, Wang Y, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences, 2016, 75(10):1-8.
[5]Günther R M, Salzer K, Popp T, et al. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling[J]. Rock Mechanics and Rock Engineering, 2015, 48(6):2603-2613.
[6]Zhou K P, Bin L I, Jie-Lin L I, et al. Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4):1254-1261.
[7]Chan K S, Bodner S R, Fossum A F, et al. A Damage Mechanics Treatment of Creep Failure in Rock Salt[J]. International Journal of Damage Mechanics, 1997, 6(2):121-152.
[8]Chan K S, Bodner S R, Fossum A F, et al. Inelastic Flow Behavior of Argillaceous Salt[J]. International Journal of Damage Mechanics, 1996, 5(5):292-314.
[9]朱昌星, 阮怀宁, 朱珍德, 等. 岩石非线性蠕变损伤模型的研究[J]. 岩土工程学报, 2008, 30(10):1510-1513.
[ZHU C X, RUAN H N, ZHU Z D, et al. Non-linear rheological damage model of rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10):1510-1513. (in Chinese)]
[10]赵延林, 唐劲舟, 付成成, 等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报, 2016, 35(7):1297-1308.
[ZHAO Y L, TANG J Z, FU C C, et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1297-1308. (in Chinese)]
[11]张强勇, 杨文东, 张建国, 等. 变参数蠕变损伤本构模型及其工程应用[J]. 岩石力学与工程学报, 2009, 28(4):732-739.
[ZHANG Q Y, YANG W D, ZHANG J G, et al. Variable parameters-based creep damage constitutive model and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):732-739. (in Chinese)]
[12]宋勇军, 雷胜友, 刘向科. 基于硬化和损伤效应的岩石非线性蠕变模型[J]. 煤炭学报, 2012, 37(增刊2):287-292.
[SONG Y J, LEI S Y, LIU X K. Non-linear rock creep model based on hardening and damage effect[J]. Journal of China Coal Society, 2012, 37(Sup 2):287-292. (in Chinese)]
[13]金磊, 夏才初. 理论流变力学模型中蠕变损伤的研究方法与问题[J]. 岩石力学与工程学报, 2012, 31(增刊1):3006-3014.
[JIN L, XIA C C. Study methods for creep damage in theoretical rheological models and some problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup 1):3006-3014. (in Chinese)]
[14]范庆忠, 高延法, 崔希海, 等. 软岩非线性蠕变模型研究[J]. 岩土工程学报, 2007, 29(4):505-509.
[FAN Q Z, GAO Y F, CUI X H, et al. Study on nonlinear creep model of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4):505-509. (in Chinese)]
[15]Adolfsson K, Enelund M, Olsson P. On the Fractional Order Model of Viscoelasticity[J]. Mechanics of Time-Dependent Materials, 2005, 9(1):15-34.
[16]Zhou H W, Wang C P, Han B B, et al. A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1):116-121.[17]Blair G W S. Analytical and Integrative Aspects of the Stress-Strain-Time Problem[J]. Journal of Scientific Instruments, 1944, 21(5):80-84.
[18]巨能攀, 黄海峰, 郑达, 等. 考虑含水率的红层泥岩蠕变特性及改进伯格斯模型[J]. 岩土力学,2016, 37(增刊2):67-74.
[JU N P, HUANG H F, ZHENG D, et al. Improved Burgers model for creep characteristics of red bed mudstone considering water content[J]. Rock and Soil Mechanics, 2016, 37(Sup 2):67-74. (in Chinese)]
[19]毕港, 韦健飞, 黄梦昌,等. 土体蠕变的新模型[J]. 水文地质工程地质, 2016, 43(6):53-58.
[BI G, WEI J F, HUANG M C, et al. A new model for soil creep[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 53-58. (in Chinese)]
[20]唐皓, 赵法锁, 段钊,等. 基于分数阶微积分改进的黄土西原模型[J]. 水文地质工程地质, 2014, 41(5):50-56.
[TANG H, ZHAO F S, DUAN Z, et al. The improved Nishihara model of loess based on fractional calculus [J]. Hydrogeology & Engineering Geology, 2014, 41(5): 50-56. (in Chinese)]
[21]赵宝云, 刘东燕, 郑颖人,等. 红砂岩单轴压缩蠕变试验及模型研究[J]. 采矿与安全工程学报, 2013, 30(5):744-747.
[ZHAO B Y, LIU D Y, ZHENG Y R, et al. Uniaxial compressive creep test of red sandstone and its constitutive model[J]. Journal of Mining & Safety Engineering, 2013, 30(5):744-747. (in Chinese)]

相似文献/References:

[1]杨爱武,闫澍旺,杜东菊,等.蠕变条件下吹填软土结构强度形成研究[J].水文地质工程地质,2011,38(6):62.
 YANG Ai-wu,YAN Shu-wang,DU Dong-ju.A study of the formation of structure yield stress subject to creep of the soft dredger fill[J].Hydrogeology & Engineering Geology,2011,38(3):62.
[2]王四巍,于怀昌,高丹盈,等.塑性混凝土弹性模量室内试验研究[J].水文地质工程地质,2011,38(3):73.
 WANG Si-wei,YU Huai-chang,GAO Dan-ying,et al.Testing on elastic modulus of plastic concrete[J].Hydrogeology & Engineering Geology,2011,38(3):73.
[3]王迎超,尚岳全,孙红月,等.复合式衬砌在围岩蠕变过程中的受力规律研究[J].水文地质工程地质,2010,37(2):49.
 WANG Ying-chao,SHANG Yue-quan,SUN Hong-yue,et al.Study on mechanical rules of double-lining in creeping surrounding rock[J].Hydrogeology & Engineering Geology,2010,37(3):49.
[4]熊良宵,虞利军.锚固岩体的单轴压缩力学特性及其各向异性特征分析[J].水文地质工程地质,2018,45(04):52.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.08]
 XIONG Liangxiao,YU Lijun.Analyses of uniaxial compressive mechanical properties and anisotropic characteristics of anchored rock mass[J].Hydrogeology & Engineering Geology,2018,45(3):52.[doi:10.16030/j.cnki.issn.1000-3665.2018.04.08]
[5]杨爱武,郑宇轩,肖敏.人工制备结构性软黏土长期变形特性试验研究[J].水文地质工程地质,2019,46(2):133.[doi:10.16030/j.cnki.issn.1000-3665.2019.02.18]
 YANG Aiwu,ZHENG Yuxuan,XIAO Min.An experimental study of the long-term deformation characteristics of artificial structured soft clay[J].Hydrogeology & Engineering Geology,2019,46(3):133.[doi:10.16030/j.cnki.issn.1000-3665.2019.02.18]
[6]魏建柄,刘卫斌.非饱和土蠕变力学特性试验及经验模型研究[J].水文地质工程地质,2019,46(06):67.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.09]
 WEI Jianbing,LIU Weibing.An experimental study of the creep mechanical properties of unsaturated soil and empirical models[J].Hydrogeology & Engineering Geology,2019,46(3):67.[doi:10.16030/j.cnki.issn.1000-3665.2019.06.09]
[7]周静静,赵法锁,袁湘秦,等.滑带土蠕变过程及微观结构演化分析[J].水文地质工程地质,2020,47(3):115.[doi:10.16030/j.cnki.issn.1000 -3665.2019010011]
 ZHOU Jingjing,ZHAO Fasuo,YUAN Xiangqin,et al.Creep process and the microstructural evolution of sliding -zone soil[J].Hydrogeology & Engineering Geology,2020,47(3):115.[doi:10.16030/j.cnki.issn.1000 -3665.2019010011]

备注/Memo

备注/Memo:
收稿日期: 2016-12-20; 修订日期: 2017-01-17
基金项目: 国家自然科学基金项目资助(41372306)?
第一作者: 黄海峰(1993-),男,硕士研究生,主要从事岩土体稳定性及工程环境效应研究。E-mail:651045475@qq.com
通讯作者: 巨能攀(1973-),男,博士,教授,博导,主要从事岩质高边坡和灾害监测预警的研究。E-mail:jnp@cdut.edu.cn
更新日期/Last Update: 2017-08-10