[1]李晓萌,郭华明,曹永生,等.沉积物不同提取态有机物特征及水文地球化学意义——以河套盆地典型研究区为例[J].水文地质工程地质,2017,44(2):40-47.
 LI Xiaomeng,GUO Huaming,CAO Yongsheng,et al.Characteristics of different extractable organic matter in sediments and its hydrogeochemical significance: A case study of the typical study area in hetao basin[J].Hydrogeology & Engineering Geology,2017,44(2):40-47.
点击复制

沉积物不同提取态有机物特征及水文地球化学意义——以河套盆地典型研究区为例()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
44卷
期数:
2017年2期
页码:
40-47
栏目:
OA栏目
出版日期:
2017-03-15

文章信息/Info

Title:
Characteristics of different extractable organic matter in sediments and its hydrogeochemical significance: A case study of the typical study area in hetao basin
作者:
李晓萌 12郭华明12曹永生12张迪12修伟12
1.中国地质大学(北京)水资源与环境学院,北京100083; 2.教育部地下水循环与环境演化重点实验室,北京100083
Author(s):
LI Xiaomeng 12 GUO Huaming 12 CAO Yongsheng 12 ZHANG Di 12 XIU Wei 12
1. School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing100083, China; 2. MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, Beijing100083, China
关键词:
沉积物地下水有机碳光谱指数三维荧光光谱
Keywords:
sediment groundwater organic carbon spectral index excitation-emission matrix spectroscopy
分类号:
P641.3
文献标志码:
A
摘要:
地下水系统中有机物(OM)特征和活性对于地下水化学特征的形成和演化起着十分重要的作用。将内蒙古河套盆地表层湖相沉积物按10 cm间隔采集,并对沉积有机质的性质及来源进行重点分析。测量了不同深度上不同岩性沉积物的色度、水溶性有机物(WEOM)和盐溶性有机物(SEOM)含量及其光谱学特性。结果显示,沉积物的色度(R530-520)与TOC含量呈现相反的变化趋势:色度值较大时,TOC含量反而较小。相对于细砂层,黏土层的色度值较低,但TOC含量较高。相同的沉积物中,SEOM含量高于WEOM,但WEOM更易迁移至地下水中。有机物的光谱指数表明,WEOM以微生物来源为主,而SEOM以陆源为主。通过三维荧光光谱分析发现,荧光强度和沉积物有机碳(SOC)含量呈正相关;黏土层沉积有机物荧光强度更高;WEOM和SEOM均含类腐殖质成分和类蛋白成分,但SEOM中腐殖质成分较高;类腐殖质是所研究的沉积物中OM最主要的存在形式。
Abstract:
Characteristics and reactivity of organic matter (OM) in groundwater systems play very important roles in the formation and evolution of groundwater chemical characteristics. In this study, 70 fluviolacustrine sediments were taken at 10 cm interval near the land surface in the Hetao Basin of Inner Mongolia to characterize sedimentary organic matter properties. The diffuse spectral reflectance of sediments, water soluble organic matter (WEOM) and salt soluble organic matter (SEOM) contents and their spectroscopic properties were measured. Results showed that diffuse spectral reflectance between 530 nm and 520 nm(R530-520) of sediments and TOC content showed the opposite trend: When the R530-520 value was higher, the TOC content was lower. In comparison with fine sand, clay layer had lower R530-520 values, but higher TOC contents. In the same sediment, contents of SEOM were higher than those of WEOM, but WEOM was easier to migrate into groundwater. The spectral index showed that WEOM possesses more biological/microbe-associated materials, but SEOM is representative of terrigenous materials.Excitation-emission matrix spectroscopy analysis showed that the fluorescence intensities were positively correlated with OC contents in sediments (SOC),which were high in clay layer. Moreover, both WEOM and SEOM had similar humic-like components and protein-like components, but the humic-like components in SEOM were higher than those in WEOM. Humic-like OM is considered to be the most important form in sedimentary OM in this study.

参考文献/References:

[1]徐芬, 马腾, 石柳,等. 内蒙古河套平原高碘地下水的水文地球化学特征[J]. 水文地质工程地质, 2012, 39(5): 8-15.
[XU F, MA T, SHI L, et al. Hydrogeochemical characteristics of high iodine groundwater in the Hetao Plain,Inner Mongolia[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 8-15.(in Chinese)].
[2]Mladenov N, Zheng Y, Miller M P, et al. Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers[J]. Environmental Science & Technology, 2010, 44(1): 123-128.
[3]Gleeson J, Santos I R, Maher D T, et al. Groundwater-surface water exchange in a mangrove tidal creek: Evidence from natural geochemical tracers and implications for nutrient budgets[J]. Marine Chemistry, 2013, 156(11): 27-37.
[4]周殷竹, 郭华明, 逯海. 高砷地下水中溶解性有机碳和无机碳稳定同位素特征[J]. 现代地质, 2015, 29(2): 252-259.
[ZHOU Y Z, GUO H M, LU H. Stable Isotope Characteristics of Dissolved Organic Carbon and Inorganic Carbon in High Arsenic Groundwater[J]. Geoscience, 2015, 29(2): 252-259.(in Chinese)]
[5]Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry, 2003, 82(3-4): 239-254.
[6]Stedmon C A, Markager S. Resolving the variability in dissolved organic matter fluorescence in atemperate estuary and its catchment using Parafac analysis[J]. Limnology & Oceanography, 2005, 50(2): 686-697.
[7]Huang S B, Wang Y X, Chao L, et al. Characterization of DOM from soil in unsaturated zone and its implications on arsenic mobilization into groundwater[J]. Earth Science(Journal of China University of Geosciences), 2012, 37(3): 605-611.
[8]Huang S B, Wang Y X, Ma T, et al. Linking groundwater dissolved organic matter to sedimentary organic matter from a fluvio-lacustrine aquifer at Jianghan Plain, China by EEM-PARAFAC and hydrochemical analyses[J]. Science of the Total Environment, 2015, 529: 131-139.
[9]Guo H M, Zhang B, Li Y, et al. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia[J]. Environmental Pollution, 2011, 159(4): 876-883.
[10]高存荣, 李朝星, 周晓虹,等. 河套平原临河区高砷地下水分布及水化学特征[J]. 水文地质工程地质, 2008, 35(6): 22-28.
[GAO C R, LI C X, ZHOU X H, et al. Occurrence and hydrochemical characteristics of As-rich groundwater in the Linhe district of the Hetao Plain[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 22-28.(in Chinese)]
[11]Toosi E R, Castellano M J, Singer J W, et al. Differences in soluble organic matter after 23 years of contrasting soil management[J]. Soil Science Society of America Journal, 2012, 76(2): 628-637.
[12]Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying [J]. Chemosphere, 1999, 38(1): 45-50.
[13]Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrophotometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology & Oceanography, 2001, 46(1): 38-48.
[14]Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37(20): 4702-4708.
[15]Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2008, 40(6): 706-719.
[16]Reemtsma T, Bredow A, Gehring M. The nature and kinetics of organic matter release from soil by salt solutions [J]. European Journal of Soil Science, 1999, 50(1): 53-64.
[17]Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil[J]. Soil Biology & Biochemistry, 2006, 38(5): 991-999.
[18]何小松, 张慧, 黄彩红,等. 地下水中溶解性有机物的垂直分布特征及成因[J]. 环境科学, 2016, 37(10): 3813-3820.
[HE X S, ZHANG H, HUANG C H, et al. Vertical Distribution Characteristics of Dissolved Organic Matter in Groundwater and Its Cause[J]. Environmental Science,2016, 37(10): 3813-3820.(in Chinese)]
[19]Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346.
[20]Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration toquantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37: 5701-5710.

相似文献/References:

[1]刘立才,郑凡东,张春义.南水北调水源与北京地下水混合的水质变化特征[J].水文地质工程地质,2012,39(1):1.
 LIU Li cai,ZHENG Fan dong,ZHANG Chun yi.Characteristics of water quality of SouthtoNorth water diversion mixed with groundwater in Beijing[J].Hydrogeology & Engineering Geology,2012,39(2):1.
[2]赵娇娟,郝永红,李华敏,等.基于地下水压力波传播过程的泉水流量灰色系统模型[J].水文地质工程地质,2011,38(6):1.
 ZHAO Jiao-juan,HAO Yong-hong,LI Hua-min,et al.Grey model for karst spring discharge based on propagation process of groundwater pressure wave[J].Hydrogeology & Engineering Geology,2011,38(2):1.
[3]蔡五田,张敏,刘雪松,等.论场地土壤和地下水污染调查与风险评价的程序和内容[J].水文地质工程地质,2011,38(6):125.
 CAI Wu-tian,ZHANG Ming,LIU Xue-song,et al.On procedure and contents of investigation and risk assessment with regard to site soil and groundwater contamination[J].Hydrogeology & Engineering Geology,2011,38(2):125.
[4]李华,焦彦杰,吴文贤,等.西南岩溶地区找水的地球物理方法探讨[J].水文地质工程地质,2011,38(5):1.
 LI Hua,JIAO Yan-jie,WU Wen-xian,et al.A tentative analysis on the geophysical technique which is compatible for groundwater exploration at karst area in Southwest of China[J].Hydrogeology & Engineering Geology,2011,38(2):1.
[5]徐力刚,叶昌,张奇,等.基于模糊模式识别的地下水水质综合评价研究[J].水文地质工程地质,2011,38(5):7.
 XU Li-gang,YE Chang,ZHANG Qi,et al.Application of fuzzy pattern recognition for the comprehensive assessment of groundwater quality[J].Hydrogeology & Engineering Geology,2011,38(2):7.
[6]赵振华,袁革新,吴吉春,等.西北某放射性废物处置预选区地下水水化学特征及地球化学模拟[J].水文地质工程地质,2011,38(4):1.
 ZHAO Zhen-hua,YUAN Ge-xin,WU Ji-chun,et al.Hydrochemical characteristics and hydrogeochemical modeling of groundwater in a certain potential radioactive waste disposal site in Northwest China[J].Hydrogeology & Engineering Geology,2011,38(2):1.
[7]王金婷,毕二平.油田区地下水系统特殊防污性能评价[J].水文地质工程地质,2011,38(3):82.
 WANG Jin-ting,BI Er-ping.Evaluation of specific vulnerability of a groundwater system in an oilfield[J].Hydrogeology & Engineering Geology,2011,38(2):82.
[8]徐海珍,李国敏,张寿全,等.北京市平谷盆地地下水三维数值模拟及管理应用[J].水文地质工程地质,2011,38(2):27.
 XU Hai-zhen,LI Guo-min,ZHANG Shou-quan,et al.Development of a 3-D numerical groundwater flow model of the Pinggu Basin and groundwater resources management[J].Hydrogeology & Engineering Geology,2011,38(2):27.
[9]余婷婷,甘义群,刘存富,等.基于单体多维稳定同位素分析的地下水有机污染研究进展[J].水文地质工程地质,2011,38(1):103.
 YU Ting-ting,GAN Yi-qun,LIU Cun-fu,et al.Advances in multidimensional compound-specific stable isotope analysis method for studies of groundwater organic contamination[J].Hydrogeology & Engineering Geology,2011,38(2):103.
[10]张茂省,董英,孙萍萍,等.基于水位的赵家岸滑坡风险分析与控制[J].水文地质工程地质,2011,38(1):123.
 ZHANG Mao-sheng,DONG Ying,SUN Ping-ping,et al.Risk analysis and control of the Zhaojiaan landslide through controlling water levels[J].Hydrogeology & Engineering Geology,2011,38(2):123.

备注/Memo

备注/Memo:
收稿日期: 2016-10-08; 修订日期: 2017-01-08
基金项目: 国家自然科学基金(41222020 、 41672225)
第一作者: 李晓萌(1994-),女,硕士,主要从事地下水科学与工程研究。E-mail:lixiaomeng@cugb.edu.cn
通讯作者: 郭华明(1975-),男,教授,主要从事水文地质学方面的研究。E-mail:hmguo@cugb.edu.cn
更新日期/Last Update: 2017-06-07