ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川藏铁路雅安至林芝段重大工程水文地质问题

许模 蒋良文 李潇 漆继红 张强 李晓

许模, 蒋良文, 李潇, 漆继红, 张强, 李晓. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质, 2021, 48(5): 13-22. doi: 10.16030/j.cnki.issn.1000-3665.202103101
引用本文: 许模, 蒋良文, 李潇, 漆继红, 张强, 李晓. 川藏铁路雅安至林芝段重大工程水文地质问题[J]. 水文地质工程地质, 2021, 48(5): 13-22. doi: 10.16030/j.cnki.issn.1000-3665.202103101
XU Mo, JIANG Liangwen, LI Xiao, QI Jihong, ZHANG Qiang, LI Xiao. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13-22. doi: 10.16030/j.cnki.issn.1000-3665.202103101
Citation: XU Mo, JIANG Liangwen, LI Xiao, QI Jihong, ZHANG Qiang, LI Xiao. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13-22. doi: 10.16030/j.cnki.issn.1000-3665.202103101

川藏铁路雅安至林芝段重大工程水文地质问题

doi: 10.16030/j.cnki.issn.1000-3665.202103101
基金项目: 四川省科技厅重点研发项目(2019YFG0460);中国中铁科研项目(2018-重点-49)
详细信息
    作者简介:

    许模(1963-),男,博士,教授,主要从事水文地质工程地质教学与科研工作。E-mail:xm@cdut.edu.cn

  • 中图分类号: P641.1

Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway

  • 摘要: 川藏铁路位于大陆碰撞造山带,特殊的地质构造背景下,铁路沿线水文地质条件极为复杂,严重制约着川藏铁路规划建设和安全运营。为降低川藏铁路沿线重大工程水文地质灾害风险,从工程水文地质角度出发,结合基础地质和工程地质研究成果,阐述了川藏铁路雅安至林芝段重大工程水文地质问题,并提出下一步研究建议。研究结果表明:川藏铁路雅安至林芝段可能遭遇隧道高水压及涌突水问题、隧道高温热害问题、隧道排水影响生态环境3个重大工程水文地质问题;沿线发育多条区域性断裂带,控制着地层展布、水热活动和成矿带分布以及地下水循环演化,导致穿越断裂带的深埋长大隧道高压涌突水、高温热害及高矿化水等问题较为突出。沿线重大工程水文地质问题下一步研究工作主要为:开展高精度、多尺度的水文地质调查,把握重大问题的发育规律和致灾机制,构建精细的预测评价体系和主、被动相结合的灾害防控体系。
  • 图  1  川藏铁路沿线典型钻孔自流现象

    Figure  1.  Typical artesian borehole along the Sichuan-Tibet Railway

    图  2  川藏铁路雅安—林芝段可溶岩地层及岩溶泉点分布图

    Figure  2.  Spatial distribution of karstified strata and karst spring along the Ya’an-Linzhi section of the Sichuan-Tibet Railway

    图  3  川藏铁路沿线典型岩溶发育特征

    Figure  3.  Typical characteristics of karst development along the Sichuan-Tibet Railway

    图  4  川藏铁路沿线典型高温热水

    Figure  4.  Typical high-temperature geothermal springs along the Sichuan-Tibet Railway

    图  5  喜马拉雅地热带热水成因模式

    Figure  5.  Formation model of geothermal water in the Himalayan Geothermal Belt

    图  6  川藏铁路雅安至林芝段热水及地震分布图

    Figure  6.  Distribution of geothermal springs and earthquakes along the Ya’an-Linzhi section of the Sichuan-Tibet Railway

    图  7  隧道排水对地下水渗流场的影响

    Figure  7.  Effect of tunnel drainage on the groundwater seepage field

    表  1  川藏铁路雅安—林芝段深埋长大隧道高水压形成条件及风险等级划分

    Table  1.   Formation conditions of high-water pressure in deep and long tunnels of the Ya’an-Linzhi section of the Sichuan-Tibet Railway and classification of risk grade

    储水构造类型二级控制因素高水压形成条件高压涌突水风险等级涉及隧道
    断裂带可溶岩地层隧道深埋,岩溶发育,地下水补给条件良好,富水
    性强,断裂带附近经后期岩溶化改造更易形成贯通
    的集中性涌水通道,造成大规模高压涌水
    格聂山隧道、芒康山隧道
    花岗岩地层隧道深埋,花岗岩长大裂隙发育,为良好的储水
    空间和导水通道,与断裂带沟通使得地下水径流
    更畅通,形成稳定的高压涌水
    中等康定隧道、德达隧道
    单斜地层储水构造中—缓倾角地层
    含水层与隔水层互层
    隧道深埋,含水层补给范围大,富水性相对较强,
    在上覆下伏隔水层作用下,含水层具有承压性,
    裂隙发育部位易形成高压涌水
    中等高尔寺隧道、理塘隧道
    向斜储水构造隧道深埋,集汇水条件良好,水量较为丰富,
    向斜转折端易形成高压涌水
    中等格聂山隧道、芒康山隧道
    下载: 导出CSV

    表  2  川藏铁路雅安至林芝段岩溶隧道涌突水灾害特征

    Table  2.   Characteristics of karst tunnel water inrush disasters along the Ya’an-Linzhi section of the Sichuan-Tibet Railway

    岩溶区段隧道可溶岩地层地形地貌特征可溶岩段长度/占比涌突水特征
    雅安—康定段垭口上隧道P1q、P1l、D2深切峡谷971 m/16.3%局部集中涌突水
    二郎山隧道D2、O深切峡谷2742 m/18.6%局部集中涌突水
    郭达山隧道Z2s、St、C-Px深切峡谷1 900 m/16.5%局部高压涌突水
    理塘—巴塘段德达隧道T3q浅切宽谷(进口段)2735 m/10.8%断层附近集中涌突水
    深切峡谷(出口段)断层附近高压涌突水
    莫西隧道P3g深切峡谷3440 m/19.3%断层附近高压涌突水
    格聂隧道D1g、S2−3s
    3e、O2−3w
    深切峡谷5595 m/32.7%断层附近大规模高压涌突水
    贡觉—昌都段孜拉山隧道T3b、P1m、C2a深切峡谷6761 m/16.8%局部高压涌突水
    贡觉隧道T3b浅切宽谷920 m/3.5%局部集中涌突水
    东达山隧道T3b、C2a浅切宽谷8991 m/57.5%断层附近和隧道出口段集中涌突水
    芒康山隧道T3b深切峡谷2636 m/8.6%断层附近高压涌突水
    昌都—洛隆段康玉隧道Pz2x深切峡谷5561.5 m/28.5%断层附近高压涌突水
    洛隆—波密段多吉隧道P2l深切峡谷18072 m/74.6%断层附近高压涌突水
    多木格隧道P2l深切峡谷1288 m/8.7%隧道出口段集中涌突水
    下载: 导出CSV

    表  3  川藏铁路雅安—林芝段隧道穿越不同热水系统部位的高温热害特征

    Table  3.   Characteristics of high-temperature heat-damage of tunnel at different parts of hot spring systems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway

    隧道布设与热水系统空间位置关系热害特征涉及隧道洞身处钻孔热害情况
    隧道未穿越热水系统热水对隧道无直接影响,但偏高的热流背景可能导致深
    埋隧道因正常增温产生中低岩温和中低温热涌突水问题
    格聂山隧道、
    茶洛隧道
    无热害问题
    隧道穿越两个热水系统之间隧道埋深有限且远离控热控水构造,无深部水热活动
    影响,地温梯度低,基本无岩温异常或热涌突水问题
    康玉隧道无热害问题
    隧道穿越热水系统补给区大气降水或融雪水下渗导致浅层岩体维持低温,深部
    水热活动影响弱,但因补给区隧道埋深大,若隧道位于
    上部冷水影响区之下,可能存在中低岩温和中低温热涌
    突水问题
    德达隧道轻微热害问题
    隧道穿越热水系统径流区隧道布设于径流区之上,深部热水通过热传导方式对
    上部岩体及浅层地下水加热,隧道可能存在中低岩温
    和中低温热涌突水问题
    芒康山隧道轻微热害问题
    隧道穿越热水系统排泄区热水上升溢流时,与浅层冷水混合,出露温度略微降低,
    但地温梯度值仍较大;位于上溢区的隧道,虽埋深相对较
    浅,但穿越控制热水出露的断层或裂隙密集带附近,易诱
    发高压热水、高岩温以及热水腐蚀性问题
    康定1#隧道、
    拉月隧道
    中等热害问题、
    严重热害问题
    下载: 导出CSV
  • [1] 郭长宝, 张永双, 蒋良文, 等. 川藏铁路沿线及邻区环境工程地质问题概论[J]. 现代地质,2017,31(5):877 − 889. [GUO Changbao, ZHANG Yongshuang, JIANG Liangwen, et al. Discussion on the environmental and engineering geological problems along the Sichuan-Tibet Railway and its adjacent area[J]. Geoscience,2017,31(5):877 − 889. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-8527.2017.05.001
    [2] 潘桂棠, 任飞, 尹福光, 等. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学,2020,45(7):2293 − 2304. [PAN Guitang, REN Fei, YIN Fuguang, et al. Key zones of oceanic plate geology and Sichuan-Tibet Railway project[J]. Earth Science,2020,45(7):2293 − 2304. (in Chinese with English abstract)
    [3] LU C F, CAI C X. Challenges and countermeasures for construction safety during the Sichuan-Tibet Railway project[J]. Engineering,2019,5(5):833 − 838. doi:  10.1016/j.eng.2019.06.007
    [4] 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)
    [5] 郭长宝, 王保弟, 刘建康, 等. 川藏铁路交通廊道地质调查工程主要进展与成果[J]. 中国地质调查,2020,7(6):1 − 12. [GUO Changbao, WANG Baodi, LIU Jiankang, et al. Main progress and achievements of the geological survey project of Sichuan-Tibet Railway traffic corridor[J]. Geological Survey of China,2020,7(6):1 − 12. (in Chinese with English abstract)
    [6] 宋章, 张广泽, 蒋良文, 等. 川藏铁路工程地质特征及地质选线原则[J]. 铁道建筑,2017,57(2):142 − 145. [SONG Zhang, ZHANG Guangze, JIANG Liangwen, et al. Engineering geological features and geological route selection principle of Sichuan-Tibet Railway[J]. Railway Engineering,2017,57(2):142 − 145. (in Chinese with English abstract)
    [7] 许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报,2017,34(1):1 − 5. [XU Youding, YAO Lingkan. Some cognitions and thinkings about the specific geo-environmental problems along the Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society,2017,34(1):1 − 5. (in Chinese with English abstract)
    [8] 杨德宏. 川藏铁路昌都至林芝段主要工程地质问题分析[J]. 铁道标准设计,2019,63(9):16 − 22. [YANG Dehong. Analysis of main engineering geological problems in Changdu to Linzhi section of Sichuan-Tibet Railway[J]. Railway Standard Design,2019,63(9):16 − 22. (in Chinese with English abstract)
    [9] 文力, 魏鹏飞, 常华进, 等. 青藏高原周边地区河流分形特征与地貌、构造活动耦合关系[J]. 地质通报,2018,37(6):965 − 974. [WEN Li, WEI Pengfei, CHANG Huajin, et al. A study of the coupling relationship between fractal characteristics of river, geomorphology and tectonic activity in areas around the Tibetan Plateau[J]. Geological Bulletin of China,2018,37(6):965 − 974. (in Chinese with English abstract)
    [10] 潘桂棠, 肖庆辉, 尹福光, 等. 中国大地质构造[M]. 北京: 地质出版社, 2017.

    PAN Guitang, XIAO Qinghui, YIN Fuguang, et al. Great geological structure of China[M]. Beijing: Geology Press, 2017.(in Chinese)
    [11] 任文峰. 高水压隧道应力场—位移场—渗流场耦合理论及注浆防水研究[D]. 长沙: 中南大学, 2013.

    REN Wenfeng. Theory research of stress field displacement field and seepage field and study on grouting waterproofing of high water pressure tunnel[D]. Changsha: Central South University, 2013. (in Chinese with English abstract)
    [12] 黄润秋, 王贤能, 陈龙生. 深埋隧道涌水过程的水力劈裂作用分析[J]. 岩石力学与工程学报,2000,19(5):573 − 576. [HUANG Runqiu, WANG Xianneng, CHEN Longsheng. Hydro-splitting off analysis on underground water in deep-lying tunnels and its effect on water gushing out[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(5):573 − 576. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-6915.2000.05.006
    [13] 许模, 毛邦燕, 张广泽, 等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版),2020,47(6):724 − 732. [XU Mo, MAO Bangyan, ZHANG Guangze, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet plateau, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2020,47(6):724 − 732. (in Chinese with English abstract)
    [14] 胡圣标, 黄少鹏. 中国陆地大地热流[C]//汪集旸. 地热学及其应用. 北京: 科学出版社, 2015.

    HU Shengbiao, HUANG Shaopeng. Heat flow in the continental area of China[C]//WANG Jiyang. Geothermics and its applications. Beijing: Science Press, 2015. (in Chinese)
    [15] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract) doi:  10.6038/cjg20160815
    [16] 廖志杰, 赵平. 滇藏地热带: 地热资源和典型地热系统[M].北京: 科学出版社, 1999.

    LIAO Zhijie, ZHAO Ping. Yunnan-Tibet geothermal belt-geothermal resources and typical geothermal systems[M]. Beijing: Science Press, 1999.(in Chinese)
    [17] 李振清, 侯增谦, 聂凤军, 等. 藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据[J]. 地质学报,2005,79(1):68 − 77. [LI Zhenqing, HOU Zengqian, NIE Fengjun, et al. Characteristic and distribution of the partial melting layers in the upper crust: evidence from active hydrothermal fluid in the south Tibet[J]. Acta Geologica Sinica,2005,79(1):68 − 77. (in Chinese with English abstract)
    [18] 白嘉启, 梅琳, 杨美伶. 青藏高原地热资源与地壳热结构[J]. 地质力学学报,2006,12(3):354 − 362. [BAI Jiaqi, MEI Lin, YANG Meiling. Geothermal resources and crustal thermal structure of the Qinghai-Tibet plateau[J]. Journal of Geomechanics,2006,12(3):354 − 362. (in Chinese with English abstract)
    [19] 刘美, 白登海, 肖鹏飞. 青藏高原东部岩石圈电性结构特征及其构造意义[J]. 地震地质,2010,32(1):51 − 58. [LIU Mei, BAI Denghai, XIAO Pengfei. The electrical conductivity structure of the eastern Tibetan Plateau and its tectonic implications[J]. Seismology and Geology,2010,32(1):51 − 58. (in Chinese with English abstract) doi:  10.3969/j.issn.0253-4967.2010.01.005
    [20] 王生仁, 张晓宇, 杜世回, 等. 川藏铁路拉月隧道穿越东构造结地温分布特征及预测[J]. 隧道建设(中英文),2021,41(1):100 − 107. [WANG Shengren, ZHANG Xiaoyu, DU Shihui, et al. Geothermal distribution characteristics and prediction of Layue tunnel of Sichuan-Tibet Railway passing through east syntaxis[J]. Tunnel Construction,2021,41(1):100 − 107. (in Chinese with English abstract)
    [21] 李苍松, 李强, 史永跃, 等. 关于川藏铁路隧道施工地下水环境保护的认识和建议[J]. 现代隧道技术,2019,56(增刊1):24 − 33. [LI Cangsong, LI Qiang, SHI Yongyue, et al. Understanding and suggestions on groundwater environmental protection in Sichuan-Tibet Railway tunnel construction[J]. Modern Tunnelling Technology,2019,56(Sup1):24 − 33. (in Chinese with English abstract)
    [22] 刘金刚. 基于生态环境保护的隧道排水控制研究[J]. 现代隧道技术,2014,51(3):61 − 66. [LIU Jingang. Research on tunnel drainage control based on ecological environment protection[J]. Modern Tunnelling Technology,2014,51(3):61 − 66. (in Chinese with English abstract)
    [23] 侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质,2006,33(2):340 − 351. [HOU Zengqian, MO Xuanxue, YANG Zhiming, et al. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau: Tectonic setting, tempo-spatial distribution and ore deposit types[J]. Geology in China,2006,33(2):340 − 351. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3657.2006.02.013
    [24] 张彧齐, 周训, 刘海生, 等. 云南兰坪—思茅盆地红层中温泉和盐泉的水文地质特征[J]. 水文地质工程地质,2018,45(3):40 − 48. [ZHANG Yuqi, ZHOU Xun, LIU Haisheng, et al. Hydrogeological characteristics of the hot springs and salty springs occurring in the redbeds in the Lanping-Simao Basin of Yunnan[J]. Hydrogeology & Engineering Geology,2018,45(3):40 − 48. (in Chinese with English abstract)
    [25] QI J H, LI X, XU M, et al. Origin of saline springs in Yanjing, Tibet: Hydrochemical and isotopic characteristics[J]. Applied Geochemistry,2018,96:164 − 176. doi:  10.1016/j.apgeochem.2018.06.013
    [26] 杨艳娜. 西南山区岩溶隧道涌突水灾害危险性评价系统研究[D]. 成都: 成都理工大学, 2009.

    YANG Yanna. Research of karst tunnel water bursting hazard risk assessment system in the southwest mountainous area[D]. Chengdu: Chengdu University of Technology, 2009. (in Chinese with English abstract)
    [27] 中国中铁二院工程集团有限责任公司, 成都理工大学地质灾害防治与地质环境保护国家重点实验室. 高铁隧道外水压力多尺度集成分析及应用研究[R]. 2018.

    China Railway Eryuan Engineering Group Co, Ltd, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology. Multi-scale integrated analysis and application of external water pressure of tunnel of high-speed railway tunnels[R]. 2018. (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  26
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 修回日期:  2021-05-14
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回