ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川藏铁路某车站泥石流群发育特征及对线路的影响

何坤 胡卸文 刘波 周瑞宸 席传杰 韩玫 张晓宇

何坤, 胡卸文, 刘波, 周瑞宸, 席传杰, 韩玫, 张晓宇. 川藏铁路某车站泥石流群发育特征及对线路的影响[J]. 水文地质工程地质, 2021, 48(5): 137-149. doi: 10.16030/j.cnki.issn.1000-3665.202103093
引用本文: 何坤, 胡卸文, 刘波, 周瑞宸, 席传杰, 韩玫, 张晓宇. 川藏铁路某车站泥石流群发育特征及对线路的影响[J]. 水文地质工程地质, 2021, 48(5): 137-149. doi: 10.16030/j.cnki.issn.1000-3665.202103093
HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of the debris flow group in one station of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 137-149. doi: 10.16030/j.cnki.issn.1000-3665.202103093
Citation: HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of the debris flow group in one station of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 137-149. doi: 10.16030/j.cnki.issn.1000-3665.202103093

川藏铁路某车站泥石流群发育特征及对线路的影响

doi: 10.16030/j.cnki.issn.1000-3665.202103093
基金项目: 国家重点研发计划项目(2018YFC1505401);国家自然科学基金项目(41731285;41907225);四川省科技厅科技计划项目(2021YJ0033)
详细信息
    作者简介:

    何坤(1996-),男,博士研究生,主要从事地质灾害成因与防治方面的研究。E-mail:hekun429@126.com

    通讯作者:

    胡卸文(1963-),男,博士,教授,博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com

  • 中图分类号: P642.3

Characteristics and potential engineering perniciousness of the debris flow group in one station of the Sichuan-Tibet Railway

  • 摘要: 川藏铁路某车站位于藏东南冻错曲沟谷内,处于泥石流集中暴发区。采用现场调查、遥感解译等方法对影响车站的泥石流群孕灾环境和发育特征进行了深入研究。结果表明:该区以发育包括10条暴雨型泥石流与2条冰湖溃决泥石流在内的泥石流群为特征,地形地貌、水源动力和物源对泥石流群的发育起主要控制性作用。泥石流沟的流域形态完整系数集中在0.15~0.55之间,多为长条形与栎叶形,沟床的纵比降整体偏大,有利于泥石流的水源汇聚和发生。而泥石流流域内的沟道岸坡坡度多为20°~40°,相对有利于泥石流物源的补给。对该泥石流群中的12条泥石流沟进行动力学参数计算,分析其运动特征和发展趋势,认为该泥石流群的堆积扇普遍比较明显且未修建防治工程,在极端暴雨条件下,再次暴发较大规模泥石流的可能性大。最后评价了单沟暴发及冻错曲两岸对冲暴发场景下泥石流群对线路的潜在工程影响并给出了防治对策,建议线路在穿越泥石流沟部位布设排导槽或停淤堤进行束流归流,并对桥墩做好迎水面防块石撞击措施。研究结果对川藏铁路泥石流防治工程规划设计具有一定指导意义,也可为山区交通干线的合理选线提供科学依据。
  • 图  1  川藏铁路某车站泥石流群位置及区域地质构造图

    1—玛索沟;2—义俄1#沟;3—义俄2#沟;4—义俄3#沟;5—义俄4#沟;6—龙哥布沟;7—察达4#沟;8—察达3#沟;9—察达1#沟;10—察达2#沟;11—巴曲沟;12—冻错曲沟;C2P1l—石炭系上统-二叠系下统来姑组板岩、变质砂岩夹花岗岩;K1d—白垩系下统多尼组含砾砂岩、砂岩;E2Z—古近系中统宗白群砾岩;ηγJ—二长花岗岩;γδJ—花岗闪长岩

    Figure  1.  Location and regional tectonic map of the debris-flow group in a station of the Sichuan-Tibet Railway

    图  2  义俄1#泥石流沟主沟纵剖面(图1中A-A’ 剖面)

    Figure  2.  Longitudinal section of the Yi’e 1# debris flow gully (section A-A’ in Fig. 1

    图  3  巴曲沟典型工程地质剖面图(图1中B-B’ 剖面)

    Figure  3.  Typical geological section of the Baqu gully (section B-B’ in Fig. 1

    图  4  义俄2#沟泥石流堆积扇(镜向NW50°)

    Figure  4.  Deposition fan of the Yi’e 2# debris flow (photograph direction: NW50°)

    图  5  流域面积与沟床纵坡降关系图

    Figure  5.  Relation between area and longitudinal slope

    图  6  沟道岸坡平均坡度分布特征

    Figure  6.  Average slope distribution characteristics

    图  7  泥石流沟沟域坡度图

    Figure  7.  Statistics of slope gradient of debris flows

    图  8  2020年7月19日义俄1#泥石流

    Figure  8.  Yi’e 1# debris flow occurred on 19 July, 2020

    图  9  义俄1#泥石流沟影响范围平面图

    Figure  9.  Influencing region of the Yi’e 1# debris flow

    图  10  义俄1#泥石流沟影响范围1-1’剖面

    Figure  10.  Profile 1-1’ of influencing region of the Yi’e 1# debris flow

    图  11  不同频率下泥石流堵河概率评价

    Figure  11.  Probability assessment of debris flow blocking main river at different return-record rainfall

    图  12  冻错曲两岸对冲型泥石流沟影响范围平面图

    Figure  12.  Influencing region of debris flows along both banks of Dongcuoqu

    表  1  某车站泥石流群特征参数

    Table  1.   Basic characteristics of the debris flow group in the station

    沟道流域面积/km2主沟长度/km平均坡降/‰最大高程/m最小高程/m最大高差/m
    冻错曲226.2731.4427.27518038151365
    巴曲49.2511.82133.89532437421582
    察达1#2.722.94340.25524737191528
    察达2#2.332.36441.39519337291464
    察达3#1.993.60570.44576737122055
    察达4#1.522.07482.3446933696997
    义俄1#4.953.01502.99519736831514
    义俄2#11.896.95249.17542837001728
    义俄3#5.214.91344.12542237311691
    义俄4#3.142.69580.57531137511560
    龙哥布23.787.82217.08537036721698
    玛索沟1.222.18605.80491035911319
    下载: 导出CSV

    表  2  泥石流流域形态完整系数统计表

    Table  2.   Statistical results of integrity coefficient of debris flow watershed morphology

    中位数平均数δ≤0.30.3<δ≤0.55
    数量比例数量比例
    0.330.33542%758%
    下载: 导出CSV

    表  3  泥石流动力学参数计算结果

    Table  3.   Calculation result of debris flow kinetic parameters

    沟道设计
    频率/%
    容重/
    (g·cm−3
    沟口流速/
    (m·s−1
    泥石流峰值
    流量/ (m3·s−1
    一次泥石流
    总量/(104 m3
    冲出固体物质
    总量/(104 m3
    整体冲击力/
    (tf·m−2
    单块最大
    冲击力/tf
    泥深/m爬高/m堆积厚度/m
    冻错曲沟21.5934.852056.4081.4328.232.8443.470.900.90
    15.322548.90121.1241.993.3547.261.021.07 
    巴曲沟21.7105.17318.2523.199.986.1953.411.202.184.14
    15.59383.6830.3913.088.0157.771.352.554.50
    察达1#21.6483.1938.371.820.722.2799.410.220.831.96
    13.3846.482.941.162.82105.350.240.932.12
    察达2#21.7103.8538.371.820.723.4426.830.241.211.79
    14.1646.482.941.164.4529.020.271.411.97
    察达3#21.5514.7317.611.280.555.1836.150.431.830.82
    15.2322.911.710.777.0039.970.502.230.92
    察达4#21.5375.4219.811.440.606.7841.610.702.400.99
    16.0425.432.010.839.0445.710.802.981.10
    义俄1#21.6765.12110.673.511.445.9639.090.452.141.34
    15.49132.095.022.067.5841.930.502.461.45
    义俄2#21.6695.4962.872.100.856.8341.931.002.461.25
    15.8576.613.061.248.5744.681.102.791.42
    义俄3#21.7175.3053.532.541.116.5440.471.202.291.67
    15.8765.283.621.578.8844.851.402.811.88
    义俄4#21.5727.0738.871.540.6211.2854.000.684.080.96
    17.6846.752.220.8914.7158.660.774.811.01
    龙哥布沟21.7037.11206.5115.056.3611.6654.331.354.132.99
    17.63247.8719.638.2914.8358.281.504.753.25
    玛索沟21.5517.1612.351.170.3910.7825.770.484.180.84
    17.7428.062.670.8912.6127.870.544.890.93
    下载: 导出CSV

    表  4  义俄1#泥石流动力学参数计算结果

    Table  4.   Calculation result of kinetic parameters of the Yi’e 1# debris flow

    沟道设计频率/%沟口流速/(m·s-1堆积厚度/m一次泥石流总量/(104 m3冲出固体物质总量/(104 m3
    义俄1#203.460.880.270.11
    103.911.481.290.53
    54.331.711.970.81
    下载: 导出CSV
  • [1] 郭长宝, 吴瑞安, 蒋良文, 等. 川藏铁路雅安—林芝段典型地质灾害与工程地质问题[J]. 现代地质,2021,35(1):1 − 17. [GUO Changbao, WU Rui’an, JIANG Liangwen, et al. Typical geohazards and engineering geological problems along the Ya’an—Linzhi section of the Sichuan-Tibet Railway, China[J]. Geoscience,2021,35(1):1 − 17. (in Chinese with English abstract)
    [2] 张广泽, 蒋良文, 宋章, 等. 横断山区川藏线山地灾害和地质选线原则研究[J]. 铁道工程学报,2016,33(2):21 − 24. [ZHANG Guangze, JIANG Liangwen, SONG Zhang, et al. Research on the mountain disaster and geological alignment fundamental of Sichuan-Tibet Railway running through N-S mountain area[J]. Journal of Railway Engineering Society,2016,33(2):21 − 24. (in Chinese with English abstract) doi:  10.3969/j.issn.1006-2106.2016.02.005
    [3] WANG Z H. Geological environment and disasters along railway line in the Qinghai-Tibet Plateau[J]. Earth Science Frontiers,2007,14(6):31 − 37. doi:  10.1016/S1872-5791(08)60003-2
    [4] HONG L, OUYANG M, PEETA S, et al. Vulnerability assessment and mitigation for the Chinese railway system under floods[J]. Reliability Engineering & System Safety,2015,137(5):58 − 68.
    [5] 郭长宝, 王保弟, 刘建康, 等. 川藏铁路交通廊道地质调查工程主要进展与成果[J]. 中国地质调查,2020,7(6):1 − 12. [GUO Changbao, WANG Baodi, LIU Jiankang, et al. Main progress and achievements of the geological survey project of Sichuan-Tibet Railway traffic corridor[J]. Geological Survey of China,2020,7(6):1 − 12. (in Chinese with English abstract)
    [6] LAN H X, MARTIN C D, ZHOU C H. Estimating the size and travel distance of Klapperhorn Mountain debris flows for risk analysis along railway, Canada[J]. International Journal of Sediment Research,2008,23(3):275 − 282. doi:  10.1016/S1001-6279(08)60025-6
    [7] GE Y G, CUI P, SU F H, et al. Case history of the disastrous debris flows of Tianmo Watershed in Bomi County, Tibet, China: Some mitigation suggestions[J]. Journal of Mountain Science,2014,11(5):1253 − 1265. doi:  10.1007/s11629-014-2579-2
    [8] 赵永国. 川藏公路泥石流灾害及其整治对策[J]. 水土保持学报,1993,7(1):69 − 74. [ZHAO Yongguo. Debris flow disasters and their controlling countermeasures along the highway from Sichuan to Xizang[J]. Journal of Soil and Water Conservation,1993,7(1):69 − 74. (in Chinese with English abstract) doi:  10.3321/j.issn:1009-2242.1993.01.010
    [9] 高波, 张佳佳, 王军朝, 等. 西藏天摩沟泥石流形成机制与成灾特征[J]. 水文地质工程地质,2019,46(5):144 − 153. [GAO Bo, ZHANG Jiajia, WANG Junchao, et al. Formation mechanism and disaster characteristics of debris flow in the Tianmo gully in Tibet[J]. Hydrogeology & Engineering Geology,2019,46(5):144 − 153. (in Chinese with English abstract)
    [10] WEI R Q, ZENG Q L, DAVIES T, et al. Geohazard cascade and mechanism of large debris flows in Tianmo gully, SE Tibetan Plateau and implications to hazard monitoring[J]. Engineering Geology,2018,233:172 − 182. doi:  10.1016/j.enggeo.2017.12.013
    [11] 陈宁生, 崔鹏, 陈瑞, 等. 中尼公路泥石流的分布规律与基本特征[J]. 中国地质灾害与防治学报,2002,13(1):44 − 48. [CHEN Ningsheng, CUI Peng, CHEN Rui, et al. The distribution and characteristics of debris flows along Sino-Nepal highway[J]. The Chinese Journal of Geological Hazard and Control,2002,13(1):44 − 48. (in Chinese with English abstract) doi:  10.3969/j.issn.1003-8035.2002.01.011
    [12] 黄勇. 中巴铁路奥依塔克至沙湖段泥石流特征分析及防治对策[J]. 铁道勘察,2015,41(3):71 − 74. [HUANG Yong. The analysis and prevention of debris flow from Aytag to Shahu section along the China to Pakistan Railway[J]. Railway Investigation and Surveying,2015,41(3):71 − 74. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-7479.2015.03.023
    [13] 刘伟朋, 郭彦威, 李胜涛, 等. 拉日铁路沿线(年木乡-日喀则段)泥石流分布特征[J]. 环境科学与技术,2015,38(增刊2):158 − 163. [LIU Weipeng, GUO Yanwei, LI Shengtao, et al. The characteristics and distribution of debris flow along the Lhasa-Shigatse Railway (Wood Township-Shigatse Section)[J]. Environmental Science & Technology,2015,38(Sup2):158 − 163. (in Chinese with English abstract)
    [14] 穆成林, 裴向军, 裴钻. 成昆铁路泸沽至西昌段泥石流基本特征研究[J]. 地下空间与工程学报,2016,12(3):845 − 851. [MU Chenglin, PEI Xiangjun, PEI Zuan. Study on the basic features for debris flows along Lugu to Xichang section of Chengdu-Kunming Railway[J]. Chinese Journal of Underground Space and Engineering,2016,12(3):845 − 851. (in Chinese with English abstract)
    [15] COSTA J E, SCHUSTER R L. The formation and failure of natural dams[J]. Geological Society of America Bulletin,1988,100(7):1054 − 1068. doi:  10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2
    [16] RICHARDSON S D, REYNOLDS J M. An overview of glacial hazards in the Himalayas[J]. Quaternary International,2000,65/66:31 − 47. doi:  10.1016/S1040-6182(99)00035-X
    [17] 彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)
    [18] LI Z G. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change[J]. Journal of Resources and Ecology,2014,5(2):123 − 131. doi:  10.5814/j.issn.1674-764X.2014.02.004
    [19] 徐正宣, 袁东, 刘志军, 等. 川藏铁路宋家沟泥石流发育特征及危险性分析[J]. 长江科学院院报,2020,37(10):165 − 170. [XU Zhengxuan, YUAN Dong, LIU Zhijun, et al. Development characteristics and risk assessment of debris flow in Songjia gully along Sichuan-Tibet Railway[J]. Journal of Yangtze River Scientific Research Institute,2020,37(10):165 − 170. (in Chinese with English abstract) doi:  10.11988/ckyyb.2020045576
    [20] 冯涛, 刘建国, 游勇, 等. 川藏铁路郭达山隧道受泥石流影响分析与防治[J]. 铁道建筑,2020,60(11):80 − 83. [FENG Tao, LIU Jianguo, YOU Yong, et al. Analysis and prevention measures against debris flow for Guodashan Mountain tunnel of Sichuan-Tibet Railway[J]. Railway Engineering,2020,60(11):80 − 83. (in Chinese with English abstract) doi:  10.3969/j.issn.1003-1995.2020.11.20
    [21] HU G S, ZHAO C Y, CHEN N S, et al. Characteristics, mechanisms and prevention modes of debris flows in an arid seismically active region along the Sichuan-Tibet Railway route, China: a case study of the Basu-Ranwu section, southeastern Tibet[J]. Environmental Earth Sciences,2019,78(18):1 − 18.
    [22] LIU S L, ZHANG J C, CHENG X, et al. Gradation and rheological characteristics of glacial debris flow along the Kangding-Linzhi section of Sichuan-Tibet Railway[J]. Advances in Civil Engineering,2020:1 − 12.
    [23] 西藏自治区地矿局. 西藏自治区区域地质志[M]. 北京: 地质出版社, 1993.

    Bureau of Geology and Mineral Resources of Tibet Autonomous Region. Geological map of Tibet Autonomous Region[M]. Beijing: Geological Press, 1993. (in Chinese)
    [24] 周必凡, 李德基, 罗德富, 等. 泥石流防治指南[M]. 北京: 科学出版社, 1991.

    ZHOU Bifan, LI Deji, LUO Defu, et al. Guide to debris flow prevention and control[M]. Beijing: Science Press, 1991. (in Chinese)
    [25] 中华人民共和国国土资源部. 泥石流灾害防治工程勘查规范: DZ/T 0220—2006[S]. 北京: 中国标准出版社, 2006.

    Ministry of Land and Resources of the People's Republic of China. Specification of geological investigation for debris flow stabilization: DZ/T 0220—2006[S]. Beijing: China Standards Press, 2006. (in Chinese)
    [26] 李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)
    [27] 徐永年, 匡尚富, 黄永键, 等. 泥石流入汇的危险性判别指标[J]. 自然灾害学报,2002,11(3):33 − 38. [XU Yongnian, KUANG Shangfu, HUANG Yongjian, et al. Hazard-deciding indices for convergence of debris flow[J]. Journal of Natural Disasters,2002,11(3):33 − 38. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-4574.2002.03.006
    [28] 庄建琦, 葛永刚, 陈兴长. 震后都汶公路沿线泥石流沟堵江危险性评估[J]. 工程地质学报,2012,20(2):195 − 203. [ZHUANG Jianqi, GE Yonggang, CHEN Xingzhang. Assessment of river block probability by debris flow along Dujiangyan-Wenchuan highway after Wenchuan earthquake[J]. Journal of Engineering Geology,2012,20(2):195 − 203. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9665.2012.02.007
    [29] 陈晓清, 陈宁生, 崔鹏. 冰川终碛湖溃决泥石流流量计算[J]. 冰川冻土,2004,26(3):357 − 362. [CHEN Xiaoqing, CHEN Ningsheng, CUI Peng. Calculation of discharge of debris flow induced by glacier lake outburst[J]. Journal of Glaciology and Geocryology,2004,26(3):357 − 362. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-0240.2004.03.018
    [30] 党超, 褚娜娜, 张鹏. 冰碛湖溃决泥石流流量计算方法[J]. 冰川冻土,2019,41(1):165 − 174. [DANG Chao, CHU Nana, ZHANG Peng. Computing method for discharges of debris flow induced by moraine-dammed lake outburst[J]. Journal of Glaciology and Geocryology,2019,41(1):165 − 174. (in Chinese with English abstract)
    [31] 中华人民共和国水利部. 堰塞湖应急处置技术导则: SL 451—2009[S]. 北京: 中国水利水电出版社, 2009.

    Ministry of Water Resources of the People’s Republic of China. Technique guideline for emergency disposal of landslide lake: SL 451—2009[S]. Beijing: China Water Power Press, 2009. (in Chinese)
    [32] DING M T, GAO Z M, HUANG T, et al. The hazard assessment of glacial lake debris flow: A case study on Dongcuoqu, Luolong County, Tibet[C]//IOP Conference Series: Earth and Environmental Science, 2020, 570: 042054.
    [33] 游勇, 程尊兰. 西藏波密米堆沟泥石流堵河模型试验[J]. 山地学报,2005,23(3):288 − 293. [YOU Yong, CHENG Zunlan. Modeling experiment of debris flow in Midui gully, Tibet[J]. Journal of Mountain Research,2005,23(3):288 − 293. (in Chinese with English abstract) doi:  10.3969/j.issn.1008-2786.2005.03.006
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  18
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 修回日期:  2021-05-26
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回