ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西宁盆地地热水特征及回灌结垢风险

赵振 秦光雄 罗银飞 晁嘉豪 耿松鹤 张亮

赵振, 秦光雄, 罗银飞, 晁嘉豪, 耿松鹤, 张亮. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质, 2021, 48(5): 193-204. doi: 10.16030/j.cnki.issn.1000-3665.202103058
引用本文: 赵振, 秦光雄, 罗银飞, 晁嘉豪, 耿松鹤, 张亮. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质, 2021, 48(5): 193-204. doi: 10.16030/j.cnki.issn.1000-3665.202103058
ZHAO Zhen, QIN Guangxiong, LUO Yinfei, CHAO Jiahao, GENG Songhe, ZHANG Liang. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 193-204. doi: 10.16030/j.cnki.issn.1000-3665.202103058
Citation: ZHAO Zhen, QIN Guangxiong, LUO Yinfei, CHAO Jiahao, GENG Songhe, ZHANG Liang. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 193-204. doi: 10.16030/j.cnki.issn.1000-3665.202103058

西宁盆地地热水特征及回灌结垢风险

doi: 10.16030/j.cnki.issn.1000-3665.202103058
基金项目: 青海省应用基础研究计划项目(2020-ZJ-758);2018年度青海省清洁能源矿产专项资金勘查项目(20181317146sh 007)
详细信息
    作者简介:

    赵振(1982-),男,高级工程师,主要从事水文地质、环境地质、地热地质调查评价等工作。E-mail:zhaozhen906@126.com

    通讯作者:

    罗银飞(1976-),男,高级工程师,主要从事水文地质、地热地质调查评价等工作。E-mail:478967346@qq.com

  • 中图分类号: P314

Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling

  • 摘要: 青海西宁盆地中低温地热资源丰富,但热储地层以含黏土矿物的弱胶结砂岩为主,地热水溶解性总固体较高,回灌过程中存在显著的结垢风险。基于对西宁盆地地热成因及资源分布特征分析,采用矿物溶解度法、饱和指数法等方法对典型地热水回灌结垢趋势及风险进行了综合判断。结果表明:西宁盆地“凹中凸”构造有利于地热水在深部热储富集和增温,同时将深部溶解的大量矿物质带到西宁地区中央凸起地带;西宁地区地热储层埋深主要在700~1600 m,水温30~70 ℃,主要为SO4·Cl—Na水化学类型,溶解性总固体1.85×103~4.80×104 mg/L;回灌过程中结垢以碳酸钙结垢为主,当回灌水与地下热水性质相近时,结垢风险主要发生在回灌井筒中,地层结垢风险较小,而当回灌水与地下热水性质差异较大时,不配伍性将导致地层结垢风险大大提高,其中药王泉与DR2005原1∶ 1混合时结垢量最大可达177.57 mg/L,而其他地热水结垢量较小。根据以上特征,提出以下综合解决方案:物理防垢+管材防腐、系统增压防垢+管材防腐和地面预处理+管材防腐,并辅之以阴极保护防腐、优化排量、酸洗井筒等措施,可为今后保障地热水回灌能力措施的制定提供理论依据与技术支持。
  • 图  1  西宁盆地构造单元划分略图(据文献[19],略有修改)

    Figure  1.  Sketch map of tectonic units in the Xining Basin (modified from Ref. [19])

    图  2  西宁盆地中新生界热储构造概念模型纵向剖面(据文献[18],略有修改)

    1—变质侵入体;2—物探推断的断层;3—盖层;4—热储;5—地下热水径流方向;N—新近系;E—古近系;K2—上白垩统;K1—下白垩统;J2x—中侏罗统享堂组;J2y—中侏罗统窑街组;Pt—元古宇;γ2—元古宙花岗岩

    Figure  2.  Longitudinal section of the conceptual model of Mesozoic thermal reservoir structure in the Xining Basin (modified from Ref. [18])

    图  3  研究区地热水分布特征

    Figure  3.  Distribution characteristics of geothermal water in the study area

    图  4  不同地热水碳酸盐垢最大生成量与溶解度曲线对比

    Figure  4.  Comparison of the maximum formation and solubility curves of carbonate scale in different geothermal waters

    图  5  不同地热水硫酸盐垢最大生成量与溶解度曲线对比

    Figure  5.  Comparison of the maximum formation and solubility curves of sulfate scale in different geothermal waters

    图  6  井筒内地热水回灌升温过程中碳酸钙过饱和指数及结垢趋势

    Figure  6.  CaCO3 saturation index and scaling trend in geothermal water reinjection and heating process in wellbore

    图  7  不同地热水回灌时结垢趋势分布

    Figure  7.  Distribution of scaling tendency during different geothermal water reinjections

    表  1  西宁地区主要地热井基本情况

    Table  1.   Statistics of the major geothermal wells in the Xining area

    孔号位置试段
    位置/m
    热储
    厚度/m
    含水层岩
    性及时代
    水头
    高度/m
    水头
    降深/m
    涌水量/
    (103 m3·d−1
    水温
    /℃
    溶解性总
    固体/(104mg·L−1
    水化学
    类型
    DR1南川工业园
    清水河南500 m
    745~1600121.90粗砂岩、中砂岩,K−19.5062.380.8159.002.30SO4·Cl—Na
    132.301.6761.00
    DR2005城南杜家庄850~1600234.30砂岩、砂砾岩,K、J−15.70107.381.3361.003.42SO4·Cl—Na
    8401药水滩碳酸盐岩地层,Jxk+4.453.360.1537.00
    8701西宁胜利宾馆309~720179.90砂岩、砂砾岩,K、J+55.8454.843.0339.503.49SO4·Cl—Na
    8601西宁供热公司460~698182.90砂岩、砂砾岩,K、J+59.9858.412.2442.203.98SO4·Cl—Na
    911西宁市杨家寨270~580251.60中细砂岩、含砾中细
    砂岩、砂砾岩,K、J
    +63.0062.00合流0.8632.003.38SO4·Cl—Na
    8309西宁彭家寨
    地矿局基地
    325~37146.36含砾砂岩,E+22.9243.330.5827.002.16SO4·Cl—Na
    CKB1西宁市小桥
    电厂北500m
    429~46838.00砂岩,K14.006.48Cl·SO4—Na
    DR2007新宁花园474~1030340.40砂岩、含砾粗砂岩,
    K、J
    +50.00自流0.4853.005.30SO4·Cl—Na
    R2海湖新区697~1159196.70砂岩、砂砾岩,
    K、J
    +61.00自流1.8942.002.65SO4·Cl—Na
    DR2010互助县
    威远镇
    1039~1925362.50砂岩、砂砾岩,
    K、J
    +27.00自流1.4062.003.59Cl·SO4—Na
    下载: 导出CSV

    表  2  西宁地区典型地热水样水质分析结果

    Table  2.   Hydrochemical ananlyses of typical geothermal water samples in the Xining area

    地热水类型DR2005DR2007DR2016药王泉8401DR2005原DR2016原
    K+/(mg·L−165.8148.7480.6918.224.63124.0087.40
    Na+/(mg·L−11.18×1031.66×1041.51×1043.65×10320.111.11×1041.26×104
    Ca2+/(mg·L−124.04425.55549.5541.36317.40270.10418.00
    Mg2+/(mg·L−18.21140.00176.1119.3693.6978.30149.00
    Br2+/(mg·L−10.13<0.020.25<0.0200.050
    Sr2+/(mg·L−10.3713.8348.152.9706.1025.70
    ${\rm{HCO}}_3^- $/(mg·L−12.81×1030.70×1030.75×1032.82×1031.31×1031.41×1030.70×103
    ${\rm{CO}}_3^{2-} $/(mg·L−1025.42064.71000
    Cl/(mg·L−139.979.36×1032.26×1041.2×1037.526.98×1031.94×104
    ${\rm{SO}}_4^{2-} $/(mg·L−1146.662.07×1041.22×1034.16×10345.431.42×1041.17×103
    游离CO2/(mg·L−110.81014.190030.7716.70
    pH7.408.417.208.346.687.568.08
    溶解性总固体/(mg·L−14.34×1034.80×1044.06×1041.20×1041.85×1033.42×1043.44×104
    水化学类型判断HCO3—NaSO4·Cl—NaCl—NaSO4·HCO3—NaHCO3—CaSO4·Cl—NaCl—Na
    备注水样污染前期测定前期测定
    下载: 导出CSV

    表  3  回灌井筒内碳酸钙垢过饱和指数及结垢趋势

    Table  3.   CaCO3 saturation index and scaling trend in wellbore

    注入水DR2005原DR2007DR2016药王泉8401
    过饱和指数1.191.850.861.801.21
    结垢趋势/(mg·L−1191.78103.93151.2110.29254.40
    下载: 导出CSV

    表  4  地层内碳酸钙垢过饱和指数及结垢趋势

    Table  4.   CaCO3 saturation index and scaling trend in formation

    注入水在
    地层中的
    比例/%
    注入水类别
    DR2005原DR2007DR2016药王泉8401
    过饱和
    指数
    000000
    10−0.01−0.020.0080.11−0.03
    20−0.02−0.040.0130.22−0.06
    30−0.03−0.060.0150.33−0.09
    40−0.03−0.080.0140.43−0.11
    50−0.04−0.100.0120.54−0.13
    60−0.04−0.110.0080.64−0.14
    70−0.04−0.110.0020.74−0.14
    80−0.03−0.11−0.0020.84−0.13
    90−0.02−0.08−0.0040.89−0.07
    10000000
    结垢趋势/(mg·L−1000000
    10004.2160.160
    20006.59110.050
    30007.36147.500
    40006.80170.490
    50005.26177.570
    60003.13168.380
    70000.92143.900
    80000106.170
    9000057.650
    10000000
    下载: 导出CSV

    表  5  地热回灌井筒防腐防垢防堵措施汇总及对比

    Table  5.   Summary and comparison of anti-corrosion, anti-scaling and anti-blocking measures in geothermal reinjection wellbore

    序号措施原理防腐防垢防堵备注
    1地热水预处理(常压/低压)对尾水进行预结垢、杀菌、曝晒释放
    酸性气体、除氧、除颗粒等
    设计工艺流程及计算参数指标
    2回灌储层优选回灌水-地下热水配伍性良好,同层
    注采
    进行配伍性分析,提出储层选择标准
    3系统增压法调pH、加CO2防止地热水脱气、或恢复地热水溶解
    气状态,使地热水结垢欠饱和
    进行全流程开采-利用-注入温压场计算及结垢趋势分析,确定有效工艺参数
    4适速注入保持井筒高压低温,减小结垢和腐蚀
    趋势,避免泥砂运移
    根据地层泥砂运移及井筒结垢和腐蚀趋势优化排量
    5物理防垢新技术合金短节、HTI电偶层,形成微磁场使水分子极性化降低结垢趋势,或释放
    大量负电子中和金属离子
    基于电化学、胶体理论,已发展至第三代(磁场式-静电场式-电子场)
    6管材选择不锈钢、非金属、防腐防垢内衬玻璃钢管材+不锈钢筛网
    7阴极保护锌作为牺牲阳极可大大降低局部腐蚀
    8近井-井筒定期酸洗溶解井筒及近井地层结垢物,提高
    近井渗透率
    对井筒管材有一定要求,投入大
    9近井酸化压裂提高近井吸水能力对井筒管材有一定要求,投入大,对固结程度较差的地层压裂效果不敢保证
    下载: 导出CSV

    表  6  地热水回灌井综合防腐防垢防堵建议

    Table  6.   Suggestions for comprehensive anti-corrosion, anti-scaling and anti-blocking in geothermal water reinjection wells

    方案地面-井筒地层备注/特点
    方案1物理防垢+管材防腐同层注采/配伍性储层预防工艺简单,对系统温压变化要求不高,系统封闭无O2
    方案2系统增压防垢+管材防腐同层注采/配伍性储层需保持系统高压,防止脱气生垢,能耗增加,系统封闭无O2
    方案3地面预处理+管材防腐同层注采/配伍性储层占用面积大、工艺流程复杂,需脱氧
    辅助措施阴极保护防腐、优化排量降低井筒
    结垢和腐蚀趋势、酸洗井筒除垢
    酸化压裂提高近井吸水能力、
    优化排量防止泥砂颗粒运移
    经济性及技术可行性有待论证
    下载: 导出CSV
  • [1] 拓明明, 周训, 郭娟, 等. 重庆温泉及地下热水的分布及成因[J]. 水文地质工程地质,2018,45(1):165 − 172. [TA Mingming, ZHOU Xun, GUO Juan, et al. Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J]. Hydrogeology & Engineering Geology,2018,45(1):165 − 172. (in Chinese with English abstract)
    [2] 王洁青, 周训, 李晓露, 等. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质,2017,31(4):822 − 831. [WANG Jieqing, ZHOU Xun, LI Xiaolu, et al. Hydrochemistry and formation of the Yangchimi hot spring in the Lanping Basin of Yunnan[J]. Geoscience,2017,31(4):822 − 831. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-8527.2017.04.016
    [3] 薛宇泽, 陶鹏飞, 韩元红. 渭河盆地中深层地热资源开发存在问题及改进措施[J]. 资源环境与工程,2020,34(3):428 − 431. [XUE Yuze, TAO Pengfei, HAN Yuanhong. The problem and improvement measures of middle and deep geothermal resources development in Weihe Basin[J]. Resources Environment & Engineering,2020,34(3):428 − 431. (in Chinese with English abstract)
    [4] 马正孔. 砂岩地热尾水回灌技术的研究[J]. 华北国土资源,2018(4):72 − 73. [MA Zhengkong. The research on reinjection technology of geothermal tail water into sandstone[J]. Huabei Land and Resources,2018(4):72 − 73. (in Chinese) doi:  10.3969/j.issn.1672-7487.2018.04.030
    [5] 梅博, 郭亮, 王鹏, 等. 地热井尾水回灌技术及其应用进展[J]. 中国资源综合利用,2018,36(1):168 − 170. [MEI Bo, GUO Liang, WANG Peng, et al. The technology and application of water recharge in the tail water of geothermal well[J]. China Resources Comprehensive Utilization,2018,36(1):168 − 170. (in Chinese with English abstract)
    [6] ZHANG L, CHAO J H, GENG S H, et al. Particle migration and blockage in geothermal reservoirs during water reinjection: Laboratory experiment and reaction kinetic model[J]. Energy,2020,206:118234. doi:  10.1016/j.energy.2020.118234
    [7] 杨亚军, 丁桂伶, 徐巍, 等. 基于示踪试验及动态数据的北京小汤山地区地热资源量评价[J]. 水文地质工程地质,2020,47(5):196 − 200. [YANG Yajun, DING Guiling, XU Wei, et al. Tracer test and geothermal resource quantity evaluation based on dynamic data in the Xiaotangshan area of Beijing[J]. Hydrogeology & Engineering Geology,2020,47(5):196 − 200. (in Chinese with English abstract)
    [8] 张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255 − 268. [ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China,2019,46(2):255 − 268. (in Chinese with English abstract)
    [9] 洪增林, 张银龙, 周阳. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质,2019,46(5):1224 − 1235. [HONG Zenglin, ZHANG Yinlong, ZHOU Yang. Research on the modes of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in southern Guanzhong Basin[J]. Geology in China,2019,46(5):1224 − 1235. (in Chinese with English abstract) doi:  10.12029/gc20190522
    [10] 孟宪级, 白丽萍, 齐金生. 地热水结垢趋势的判断[J]. 工业水处理,1997,17(5):6 − 7. [MENG Xianji, BAI Liping, QI Jinsheng. The judgment of scaling tendency in geothermal water in China[J]. Industrial Water Treatment,1997,17(5):6 − 7. (in Chinese with English abstract) doi:  10.11894/1005-829x.1997.17(5).6
    [11] 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺,2021,43(2):203 − 211. [CAO Qian, FANG Chaohe, LI Yun, et al. Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil Drilling & Production Technology,2021,43(2):203 − 211. (in Chinese with English abstract)
    [12] 戴群, 王聪, 罗杨, 等. 砂岩地热储层回灌堵塞机理研究及治理对策[J]. 精细石油化工进展,2017,18(6):10 − 13. [DAI Qun, WANG Cong, LUO Yang, et al. Research on sandstone geothermal reservoir reinjection plugging mechanism and measures against it[J]. Advances in Fine Petrochemicals,2017,18(6):10 − 13. (in Chinese with English abstract) doi:  10.3969/j.issn.1009-8348.2017.06.003
    [13] 刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展,2015,3(1):38 − 46. [LIU Mingyan. A review on controls of corrosion and scaling in geothermal fluids[J]. Advances in New and Renewable Energy,2015,3(1):38 − 46. (in Chinese with English abstract) doi:  10.3969/j.issn.2095-560X.2015.01.007
    [14] 豆肖辉, 张大磊, 荆赫, 等. 不锈钢在低温地热水环境中的腐蚀与结垢行为[J]. 腐蚀与防护,2020,41(7):61 − 66. [DOU Xiaohui, ZHANG Dalei, JING He, et al. Corrosion and scaling behavior of stainless steel in low-temperature geothermal water environment[J]. Corrosion & Protection,2020,41(7):61 − 66. (in Chinese with English abstract) doi:  10.11973/fsyfh-202007010
    [15] 马致远, 侯晨, 席临平, 等. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质,2013,40(5):133 − 139. [MA Zhiyuan, HOU Chen, XI Linping, et al. Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & Engineering Geology,2013,40(5):133 − 139. (in Chinese with English abstract)
    [16] 王连成. 天津市新近系馆陶组地热流体回灌研究[D]. 北京: 中国地质大学(北京), 2014.

    WANG Liancheng. A study of geothermal reinjection in the Guantao reservoir in Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2014. (in Chinese with English abstract)
    [17] 赵季初. 鲁北砂岩热储地热尾水回灌试验研究[J]. 山东国土资源,2013,29(9):23 − 30. [ZHAO Jichu. Lubei geothermal tail water reinjection experiments in sandstone reservoir[J]. Shandong Land and Resources,2013,29(9):23 − 30. (in Chinese with English abstract) doi:  10.3969/j.issn.1672-6979.2013.09.005
    [18] 赵振, 于漂罗, 陈惠娟, 等. 青海省西宁地热田成因分析及资源评价[J]. 中国地质,2015,42(3):803 − 810. [ZHAO Zhen, YU Piaoluo, CHEN Huijuan, et al. Genetic analysis and resource evaluation of the Xining geothermal field in Qinghai Province[J]. Geology in China,2015,42(3):803 − 810. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3657.2015.03.029
    [19] 尚小刚. 青海省威远镇地热田热储特征及其开发利用潜力评价[D]. 北京: 中国地质大学(北京), 2013.

    SHANG Xiaogang. Development use and potential evaluation of the thermal reservoir characteristics and geothermal resources of geothermal field in Weiyuan town, Qinghai Province[D]. Beijing: China University of Geosciences (Beijing), 2013. (in Chinese with English abstract)
    [20] 马致远, 李嘉祺, 翟美静, 等. 沉积型和火山型地热流体的同位素水文地球化学对比研究[J]. 水文地质工程地质,2019,46(6):9 − 18. [MA Zhiyuan, LI Jiaqi, ZHAI Meijing, et al. A comparative study of isotopic hydrogeochemistry of geothermal fluids of sedimentary basin type and volcanic type[J]. Hydrogeology & Engineering Geology,2019,46(6):9 − 18. (in Chinese with English abstract)
    [21] 蔡义汉. 地热直接利用[M]. 天津: 天津大学出版社, 2004.

    CAI Yihan. Geothermal direct-use[M]. Tianjin: Tianjin University Press, 2004.(in Chinese)
    [22] 李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展,2018,6(4):274 − 281. [LI Yiman, PANG Zhonghe. Carbonate calcium scale formation and quantitative assessment in geothermal system[J]. Advances in New and Renewable Energy,2018,6(4):274 − 281. (in Chinese with English abstract) doi:  10.3969/j.issn.2095-560X.2018.04.004
    [23] 任加国, 武倩倩. 水文地球化学基础[M]. 北京: 地质出版社, 2014.

    REN Jiaguo, WU Qianqian. Hydro-geochemistry[M]. Beijing: Geological Publishing House, 2014.(in Chinese)
    [24] 柴蕊. 天津市周良庄地热田地下热水的水化学及钙华研究[D]. 北京: 中国地质大学(北京), 2006.

    CHAI Rui. A study of hydrochemistry and tufa in thermal groundwater in the Zhouliangzhuang geothermal fileld, Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2006. (in Chinese with English abstract)
    [25] 刘光启. 化工物性算图手册[M]. 北京: 化学工业出版社, 2002.

    LIU Guangqi. The manual of calculation about chemical physical properties[M]. Beijing: Chemical Industry Press, 2002.(in Chinese)
    [26] 李雪娇. 硫酸钡结垢影响因素及化学阻垢实验研究[D]. 成都: 西南石油大学, 2015.

    LI Xuejiao. Experimental research on influencing factors of barium sulfate scaling and chemical scale inhibition[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese with English abstract)
    [27] ODDO J E, TOMSON M B. Why scale forms and how to predict[J]. SPE Production & Facilities,1997,9(1):47 − 54.
    [28] ODDO J E, TOMSON M B. Simplified calculation of CaCO3 saturation at high temperatures and pressures in brine solutions[J]. Journal of Petroleum Technology,1982,34(7):1583 − 1590. doi:  10.2118/10352-PA
    [29] 王磊, 唐红伟, 高雨. 油气田地面集输系统结垢预测模型研究[J]. 管道技术与设备,2012(3):12 − 13. [WANG Lei, TANG Hongwei, GAO Yu. Study of gathering system scaling prediction[J]. Pipeline Technique and Equipment,2012(3):12 − 13. (in Chinese with English abstract) doi:  10.3969/j.issn.1004-9614.2012.03.005
    [30] 贾红育, 曲志浩. 注水开发油田油层结垢趋势研究[J]. 石油勘探与开发,2001,28(1):89 − 91. [JIA Hongyu, QU Zhihao. A study on formation scaling tendency for waterflooding oilfields[J]. Petroleum Exploration and Development,2001,28(1):89 − 91. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-0747.2001.01.029
    [31] 陈易, 徐燕来, 王闰, 等. 油田注水硫酸盐垢结垢趋势预测研究[J]. 内江科技,2012,33(5):23. [CHEN Yi, XU Yanlai, WANG Run, et al. Research on prediction of sulfate scaling trend in oilfield water injection[J]. Neijiang Science & Technology,2012,33(5):23. (in Chinese) doi:  10.3969/j.issn.1006-1436.2012.05.020
    [32] 韩淑彬. G104区块注水井井筒结垢机理及防垢技术研究[D]. 成都: 西南石油大学, 2016.

    HAN Shubin. Research on scaling mechanism and anti-scaling technology of water injection well in G104 block[D]. Chengdu: Southwest Petroleum University, 2016. (in Chinese with English abstract)
    [33] 刘明言, 朱家玲. 地热能利用中的防腐防垢研究进展[J]. 化工进展,2011,30(5):1120 − 1123. [LIU Mingyan, ZHU Jialing. Progress of corrosion and fouling prevention in utilization of geothermal energy[J]. Chemical Industry and Engineering Progress,2011,30(5):1120 − 1123. (in Chinese with English abstract)
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  15
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-21
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-09-10

目录

    /

    返回文章
    返回