ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉木萨尔超排液氢氧同位素特征及地下水含量计算

贾俊 王亮 孟云涛

贾俊, 王亮, 孟云涛. 吉木萨尔超排液氢氧同位素特征及地下水含量计算[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202103045
引用本文: 贾俊, 王亮, 孟云涛. 吉木萨尔超排液氢氧同位素特征及地下水含量计算[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202103045
JIA Jun, WANG Liang, MENG Yuntao. Investigation of the characteristics of hydrogen and oxygen isotopes of the excess fracturing flowback fluid and calculation of groundwater content in the Jimsar Sag[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202103045
Citation: JIA Jun, WANG Liang, MENG Yuntao. Investigation of the characteristics of hydrogen and oxygen isotopes of the excess fracturing flowback fluid and calculation of groundwater content in the Jimsar Sag[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202103045

吉木萨尔超排液氢氧同位素特征及地下水含量计算

doi: 10.16030/j.cnki.issn.1000-3665.202103045
基金项目: 国家“973”计划(2015CB250906);国家科技重大专项项目(2016ZX05046-004);绵阳师范学院科研启动项目(QD2019A03)
详细信息
    作者简介:

    贾俊(1982-),男,博士,副教授,主要从事水文地质、岩石物理方面的研究。E-mail:e.cruiser@163.com

  • 中图分类号: P641.3

Investigation of the characteristics of hydrogen and oxygen isotopes of the excess fracturing flowback fluid and calculation of groundwater content in the Jimsar Sag

  • 摘要: 压裂返排液对环境安全和人类健康构成巨大挑战,也为地质和工程应用研究提供了宝贵资料。新疆吉木萨尔芦草沟组压裂返排液存在超排现象,为了揭示超排液来源与组成,获取原始地层卤水地球化学信息,在缺乏地下水采样情况下,系统采集研究区内两口水平井压裂液、压裂返排液和地表水样品,测定并分析其氢、氧同位素组成及随返排时间动态变异特征。在对水岩作用可能引起的同位素交换分析厘定基础上,分别测算地下水氧同位素组成及返排液中地下水含量。结果表明:相对于富D贫18O的地表水和压裂液,返排液样点明显偏离该地区大气降水线,18O同位素发生了正漂移,D同位素呈现负漂移,其水体来源发生了变化。依据返排液δ18O实测数据随返排时间的收敛模型,计算地下水δ18O为−6.902‰;返排第60天,返排液中的地下水含量分别为84%、81%,尚有43 283.4,39 150.3 m3压裂液未返出,即随着压裂改造缝不断延伸,返排时间的延长,前期注入的压裂液绝大部分仍滞留于地层中,超排液来源为持续混入的地下水。
  • 图  1  吉木萨尔凹陷地质构造图

    Figure  1.  Location and tectonic setting of the Jimsar sag

    图  2  压裂返排液δD(a)、δ18O(b)随返排时间变异特征

    Figure  2.  Time variation features of(a)δD and(b)δ18O in the fracturing flowback fluid

    图  3  地表水与压裂返排液δD-δ18O关系图

    Figure  3.  Plot of δD-δ18O of the surface water and fracturing flowback fluid

    图  4  J043、J044井返排液δ18O实测值与模型计算值随返排时间变异特征

    Figure  4.  Variation features of the measured values and model calculated values of δ18O in J043&J044 with the flowback time

    图  5  返排液中地下水、压裂液含量

    Figure  5.  Groundwater and fracturing fluid content in the flowback fluid

    表  1  地表水、压裂液氢氧同位素特征

    Table  1.   Analytical results of hydrogen and oxygen isotopes of the surface water and fracturing fluid samples

    /‰
    同位素压裂液地表水
    样品1样品2平均值样品1样品2平均值
    δDv-SMOW−72.96−73.10−73.03−73.20−73.50−73.35
    δ18Ov-SMOW−11.22−11.18−11.20−11.29−11.30−11.30
    下载: 导出CSV

    表  2  压裂返排液氢、氧同位素特征测试结果

    Table  2.   Test results of hydrogen and oxygen isotopic compositions of the fracturing flowback fluid

    样品编号采样日期返排天数氢氧同位素特征/‰样品编号采样日期返排天数氢氧同位素特征/‰
    δDδ18OδDδ18O
    043-12019-07-041−80.83−8.53044-12019-07-041−79.58−8.50
    043-22019-07-052−81.35−8.36044-22019-07-052−79.60−8.43
    043-32019-07-063−80.76−8.13044-32019-07-063−80.32−8.15
    043-42019-07-074−81.25−8.12044-42019-07-074−80.98−8.20
    043-52019-07-085−79.34−8.03044-52019-07-085−80.57−8.27
    043-62019-07-096−79.33−8.04044-62019-07-096−80.14−8.30
    043-72019-07-107−79.64−8.10044-72019-07-107−81.02−7.92
    043-82019-07-118−79.75−8.15044-82019-07-118−81.80−8.13
    043-92019-07-129−79.93−8.04044-92019-07-129−81.41−8.32
    043-102019-07-1310−78.86−8.08044-102019-07-1310−81.09−8.04
    043-112019-07-1512−79.37−8.21044-112019-07-1512−82.04−7.99
    043-122019-07-1916−80.77−7.99044-122019-07-1714−81.13−7.99
    043-132019-07-2118−79.94−8.02044-132019-07-1916−81.53−7.95
    043-142019-07-2320−79.89−7.85044-142019-07-2118−81.98−7.86
    043-152019-07-2522−80.98−7.87044-152019-07-2320−81.61−7.89
    043-162019-07-2724−80.92−7.57044-162019-07-2522−80.95−7.73
    043-172019-07-2926−81.84−7.48044-172019-07-2724−81.95−7.62
    043-182019-07-3128−81.38−7.83044-182019-07-2926−82.85−7.73
    043-192019-08-0230−82.36−7.92044-192019-07-3128−81.94−7.44
    043-202019-08-0432−81.36−7.67044-202019-08-0432−81.58−7.57
    043-212019-08-0634−80.64−7.86044-212019-08-0634−83.11−7.90
    043-222019-08-0836−80.95−7.89044-222019-08-0836−83.50−8.03
    043-232019-08-1038−80.89−7.71044-232019-08-1038−83.49−8.02
    043-242019-08-1543−81.17−7.83044-242019-08-1240−83.99−7.80
    043-252019-08-1745−81.30−7.80044-252019-08-1543−83.86−7.88
    043-262019-08-1846−81.08−7.60044-262019-08-1847−83.04−7.56
    043-272019-08-2149−80.00−7.56044-272019-08-2150−83.59−7.36
    043-282019-08-2452−80.53−7.48044-282019-08-2453−83.46−7.56
    043-292019-08-2755−80.37−7.55044-292019-08-2756−83.05−7.72
    043-302019-08-3058−81.85−7.65044-302019-08-3059−83.31−7.74
    043-312019-09-0160−81.24−7.59044-312019-09-0161−84.36−7.52
    平均值−80.64−7.89平均值−82.03−7.91
    下载: 导出CSV
  • [1] 邹才能, 杨智, 朱如凯, 等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979 − 1007. [ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China's unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979 − 1007. (in Chinese with English abstract) doi:  10.3969/j.issn.0001-5717.2015.06.001
    [2] BUTKOVSKYI A, BRUNING H, KOOLS S A E, et al. Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact, and implications for treatment strategies[J]. Environmental Science & Technology,2017,51(9):4740 − 4754.
    [3] HORNER R M, HARTO C B, JACKSON R B, et al. Water use and management in the bakken shale oil play in north Dakota[J]. Environmental Science & Technology,2016,50(6):3275 − 3282.
    [4] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology,2014,48(15):8334 − 8348.
    [5] HOWARTH R W, SANTORO R, INGRAFFEA A. Methane and the greenhouse-gas footprint of natural gas from shale formations[J]. Climatic Change,2011,106(4):679 − 690. doi:  10.1007/s10584-011-0061-5
    [6] HLADIK M L, FOCAZIO M J, ENGLE M. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams[J]. Science of the Total Environment,2014,466/467:1085 − 1093. doi:  10.1016/j.scitotenv.2013.08.008
    [7] LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment[J]. Science of the Total Environment,2015,512/513:637 − 644. doi:  10.1016/j.scitotenv.2015.01.043
    [8] 王忠亮, 郭春艳, 张彦鹏. 涞源北盆地地下水氢氧同位素特征及北海泉形成模式[J]. 水文地质工程地质,2021,48(1):27 − 35. [WANG Zhongliang, GUO Chunyan, ZHANG Yanpeng. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology,2021,48(1):27 − 35. (in Chinese with English abstract)
    [9] 杨楠, 苏春利, 曾邯斌, 等. 基于水化学和氢氧同位素的兴隆县地下水演化过程研究[J]. 水文地质工程地质,2020,47(6):154 − 162. [YANG Nan, SU Chunli, ZENG Hanbin, et al. Evolutional processes of groundwater in Xinglong County based on hydrochemistry and hydrogen and oxygen isotopes[J]. Hydrogeology & Engineering Geology,2020,47(6):154 − 162. (in Chinese with English abstract)
    [10] VIETH-HILLEBRAND A, WILKE F D H, SCHMID F E, et al. Characterizing the variability in chemical composition of flowback water - results from laboratory studies[J]. Energy Procedia,2017,125:136 − 144. doi:  10.1016/j.egypro.2017.08.146
    [11] HE Y H, FLYNN S L, FOLKERTS E J, et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water[J]. Water Research,2017,114:78 − 87. doi:  10.1016/j.watres.2017.02.027
    [12] XU Y, ADEFIDIPE O A, DEHGHANPOUR H. Estimating fracture volume using flowback data from the Horn River Basin: a material balance approach[J]. Journal of Natural Gas Science and Engineering,2015,25:253 − 270. doi:  10.1016/j.jngse.2015.04.036
    [13] BINAZADEH M, XU M X, ZOLFAGHARI A, et al. Effect of electrostatic interactions on water uptake of gas shales: the interplay of solution ionic strength and electrostatic double layer[J]. Energy & Fuels,2016,30(2):992 − 1001.
    [14] DRESEL P E. The geochemistry of oilfield brines from western Pennsylvania[EB/OL]. 1985.
    [15] 葸克来, 操应长, 朱如凯, 等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495 − 1507. [XI Kelai, CAO Yingchang, ZHU Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar sag[J]. Acta Petrolei Sinica,2015,36(12):1495 − 1507. (in Chinese with English abstract) doi:  10.7623/syxb201512004
    [16] 赵明华, 陆彦玮, Rachana Heng, 等. 关中平原降水氢氧稳定同位素特征及其水汽来源[J]. 环境科学,2020,41(7):3148 − 3156. [ZHAO Minghua, LU Yanwei, HENG R, et al. Analysis of hydrogen and oxygen stable isotope characteristics and vapor sources of precipitation in the Guanzhong plain[J]. Environmental Science,2020,41(7):3148 − 3156. (in Chinese with English abstract)
    [17] 汪少勇, 何晓波, 丁永建, 等. 长江源多年冻土区地下水氢氧稳定同位素特征及其影响因素[J]. 环境科学,2020,41(1):166 − 172. [WANG Shaoyong, HE Xiaobo, DING Yongjian, et al. Characteristics and influencing factors of stable hydrogen and oxygen isotopes in groundwater in the permafrost region of the source region of the Yangtze River[J]. Environmental Science,2020,41(1):166 − 172. (in Chinese with English abstract)
    [18] CRAIG H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702 − 1703. doi:  10.1126/science.133.3465.1702
    [19] YURTSEVER Y. Worldwide survey of stable isotopes in precipitation[EB/OL]. 1975.
    [20] 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报,1983,28(13):801 − 806. [ZHENG Shuhui, HOU Fagao, NI Baoling. Study on hydrogen-oxygen stable isotopes of meteoric precipitation in China[J]. Chinese Science Bulletin,1983,28(13):801 − 806. (in Chinese) doi:  10.1360/csb1983-28-13-801
    [21] 李晖, 蒋忠诚, 王月, 等. 新疆地区大气降水中稳定同位素的变化特征[J]. 水土保持研究,2009,16(5):157 − 161. [LI Hui, JIANG Zhongcheng, WANG Yue, et al. Variation characteristics of stable isotopes in the precipitation of Xinjiang[J]. Research of Soil and Water Conservation,2009,16(5):157 − 161. (in Chinese with English abstract)
    [22] BENETTIN P, VOLKMANN T H M, VON FREYBERG J, et al. Effects of climatic seasonality on the isotopic composition of evaporating soil waters[J]. Hydrology and Earth System Sciences,2018,22(5):2881 − 2890. doi:  10.5194/hess-22-2881-2018
    [23] TAYLOR H P, EPSTEIN S. O 18 /O 16 ratios in rocks and coexisting minerals of the skaergaard intrusion, east Greenland[J]. Journal of Petrology,1963,4(1):51 − 74. doi:  10.1093/petrology/4.1.51
    [24] Epstein S, Taylor H P. Variation of the 18O/16O ratios in minerals and rocks[C]//Abelson P H. Researches in Geochemistry. New York: John Wiley, 1967.
    [25] NOLAN G S, BINDEMAN I N. Experimental investigation of rates and mechanisms of isotope exchange (O, H) between volcanic ash and isotopically-labeled water[J]. Geochimica et Cosmochimica Acta,2013,111:5 − 27. doi:  10.1016/j.gca.2013.01.020
    [26] VALLEY J W, TAYLOR H P, O’NEIL J R. Dedication[C]//Stable Isotopes in High Temperature Geological Processes. Berlin, Boston: De Gruyter, 1986: III-IV.
    [27] 惠鹤九, 陈斌, 郑永飞, 等. 氧同位素在流体-岩石交换过程中的传输模型[J]. 地学前缘,2002,9(4):431 − 439. [HUI Hejiu, CHEN Bin, ZHENG Yongfei, et al. Models of oxygen isotope transport in the process of fluid-rock interactions[J]. Earth Science Frontiers,2002,9(4):431 − 439. (in Chinese with English abstract) doi:  10.3321/j.issn:1005-2321.2002.04.024
    [28] 赵子福, 郑永飞, 鲜青, 等. 大别山中生代岩浆岩矿物—水氧同位素交换的地球化学动力学[J]. 矿物岩石地球化学通报,2007,26(1):10 − 18. [ZHAO Zifu, ZHENG Yongfei, XIAN Qing, et al. Geochemical kinetics of oxygen isotope exchange between water and minerals in Mesozoic igneous rocks from the dabie orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2007,26(1):10 − 18. (in Chinese with English abstract) doi:  10.3969/j.issn.1007-2802.2007.01.002
    [29] BICKLE M J, BAKER J. Advective-diffusive transport of isotopic fronts: an example from Naxos, Greece[J]. Earth and Planetary Science Letters,1990,97(1/2):78 − 93.
    [30] 卢武长, 张萍, 杨绍全, 等. 570矿区的水-岩同位素相互作用[J]. 成都理工学院学报,1997,24(2):99 − 105. [LU Wuchang, ZHANG Ping, YANG Shaoquan, et al. Water-rock isotope interactions of 570 uranium deposit[J]. Journal of Chengdu University of Technology,1997,24(2):99 − 105. (in Chinese with English abstract)
    [31] JUN J, LIANG W, LIQIANG S M. Experimental study on hydrogen and oxygen isotope exchange in water-rock interaction of Lucaogou formation in Jimsar sag[J]. Arabian Journal of Geosciences,2021,14(14):1 − 10.
    [32] Gat J R. Isotope hydrology: A study of the water cycle[M]. London: Imperial College Press, 2010.
    [33] GALLEGOS T J, VARELA B A, HAINES S S, et al. Hydraulic fracturing water use variability in the U nited S tates and potential environmental implications[J]. Water Resources Research,2015,51(7):5839 − 5845. doi:  10.1002/2015WR017278
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 修回日期:  2021-05-04

目录

    /

    返回文章
    返回