ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环荷载下水泥土桩复合体动力参数试验研究

叶观宝 秦粮凯 张振 郑文强 陈勇

叶观宝, 秦粮凯, 张振, 郑文强, 陈勇. 循环荷载下水泥土桩复合体动力参数试验研究[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202103037
引用本文: 叶观宝, 秦粮凯, 张振, 郑文强, 陈勇. 循环荷载下水泥土桩复合体动力参数试验研究[J]. 水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202103037
YE Guanbao, QIN Liangkai, ZHANG Zhen, ZHENG Wenqiang, CHEN Yong. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202103037
Citation: YE Guanbao, QIN Liangkai, ZHANG Zhen, ZHENG Wenqiang, CHEN Yong. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202103037

循环荷载下水泥土桩复合体动力参数试验研究

doi: 10.16030/j.cnki.issn.1000-3665.202103037
基金项目: 国家自然科学基金项目资助(41772281;41972272)
详细信息
    作者简介:

    叶观宝(1964-),男,工学博士,教授,主要从事软土地基处理技术及理论研究。E-mail:ygb1030@126.com

    通讯作者:

    张振(1984-),男,工学博士,副教授,主要从事软基处理与教学科研工作。E-mail:zhenzhang@tongji.edu.cn

  • 中图分类号: TU411.8; TU411.93

An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading

  • 摘要: 水泥土桩被广泛应用于软土路基加固工程中。然而,人们对水泥桩与桩间土形成的加固体的动力特性尚缺乏认识,无法合理评价水泥土桩复合地基的长期性能。基于此,本文开展水泥土桩复合体大型动三轴试验,研究围压、静偏应力、置换率及分级加卸载路径对其动力参数的影响,并分析了动力参数的波动性。试验结果表明:随着静偏应力增加,复合单元体的动弹模量减小,阻尼比增大,临界动应力比减小。随着置换率增加,动弹模量略有增加,阻尼比略有减小。逐级卸载造成复合单元体的动力参数劣化。阻尼比具有较强的波动性,复合单元体阻尼比的变异系数是动弹模量的2.8~7.0倍。相比于软土,复合体动弹模量提高了2~6倍,静偏应力越大,提高系数越大。
  • 图  1  GCTS大型三轴仪

    Figure  1.  GCTS large scale triaxial apparatus

    图  2  分级循环加(卸)载示意图

    Figure  2.  Schematic diagram of staged cyclic loading (unloading)

    图  3  水泥土桩复合单元体示意图

    Figure  3.  Schematic diagram of unit cell of composite soil with DM column

    图  4  GCTS大型三轴试样制作

    Figure  4.  Specimen preparation of the GCTS large-scale triaxial test

    图  5  不同静偏应力下动力参数与循环振次的关系

    Figure  5.  Dynamic parameter vs cyclic loading times under different static deviator stresses

    图  6  不同静偏应力下动力参数与循环振次的关系

    Figure  6.  Dynamic parameter vs cyclic loading times under different static deviator stresses

    图  7  不同围压下动力参数与循环振次的关系

    Figure  7.  Dynamic parameter vs cyclic loading times under different confining pressures

    图  8  不同静偏应力下动力参数与循环振次的关系

    Figure  8.  Dynamic parameter vs cyclic loading times under different static deviator stresses

    图  9  不同置换率下动力参数与循环振次的关系

    Figure  9.  Dynamic parameter vs cyclic loading times under different area replacement ratios

    图  10  动应力分级加卸载下动力参数与循环振次的关系

    Figure  10.  Dynamic parameter vs cyclic loading times under different static deviator stresses under staged loading/unloading

    图  11  正态分布检验

    Figure  11.  Verification of normal distribution

    图  12  不同静偏应力下不同材料的动力参数变异系数

    Figure  12.  Coefficient of variation of dynamic parameter of different materials under different static deviator stresses

    图  13  不同静偏应力下不同材料的动弹性模量

    Figure  13.  Dynamic elastic modulus of different materials under different static deviator stresses

    表  1  试验方案

    Table  1.   Test scheme

    项目试验编号围压
    /kPa
    动应力比置换率
    /%
    静偏应力
    /kPa
    水泥土桩复合体
    (大型动三轴试验)
    DC1800.25~0.4511.15
    DC2800.25~0.4511.124
    DC3800.25~0.4511.132
    DC4800.25~0.4511.140
    DC1800.25~0.4511.15
    DC5800.25~0.4516.05
    DC6800.25~0.4521.75
    DC7400.25~0.4511.15
    DC8600.25~0.4511.15
    DC1800.25~0.4511.15
    DC9800.45~0.2511.15
    水泥土(动三轴试验)DC10800.25~0.451005
    DC11800.25~0.4510024
    DC12800.25~0.4510032
    DC13800.25~0.4510040
    软土(动三轴试验)DC14800.1505
    DC15800.15024
    DC16800.15032
    DC17800.15040
    下载: 导出CSV

    表  2  不同材料的动力参数取值范围

    Table  2.   Value ranges of dynamic elastic modulus of different materials

    试验材料试验内容动力参数
    动弹性模量Er/MPa阻尼比Dr
    软土静偏应力−5kPa53 ~ 700.056 ~ 0.070
    静偏应力−24kPa30 ~ 600.064 ~ 0.068
    静偏应力−32kPa25 ~ 4550.084 ~ 0.090
    静偏应力−40kPa15 ~ 250.086 ~ 0.093
    复合体
    m=11.1%
    静偏应力−5kPa100 ~ 220.050 ~ 0.079
    静偏应力−24kPa95 ~ 1200.056 ~ 0.075
    静偏应力−32kPa100 ~ 1150.062 ~ 0.085
    静偏应力−40kPa90 ~ 1100.065 ~ 0.100
    复合体
    m=16.0%
    静偏应力−5kPa110 ~ 1250.052 ~ 0.075
    复合体
    m=21.7%
    静偏应力−5kPa120 ~ 1350.027 ~ 0.059
    水泥土静偏应力−5kPa100 ~ 1080.032 ~ 0.075
    静偏应力−24kPa110 ~ 1200.039 ~ 0.069
    静偏应力−32kPa114 ~ 1230.049 ~ 0.054
    静偏应力−40kPa118 ~ 1260.040 ~ 0.055
    下载: 导出CSV
  • [1] 黄春霞, 韩爱民, 隋志龙, 等. 水泥土搅拌桩复合地基承载力的确定[J]. 水文地质工程地质,2009,36(3):99 − 102. [HUANG Chunxia, HAN Aimin, SUI Zhilong, et al. Determination of bearing capacity for composite foundation of cement-soil mixing piles[J]. Hydrogeology & Engineering Geology,2009,36(3):99 − 102. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-3665.2009.03.021
    [2] 叶观宝, 叶书麟. 水泥土搅拌桩加固软基的试验研究[J]. 同济大学学报(自然科学版),1995,23(3):270 − 275. [YE Guanbao, YE Shulin. Field study of improved soft soil by cement-soil mixed piles[J]. Journal of Tongji University (Natural Science),1995,23(3):270 − 275. (in Chinese with English abstract)
    [3] 刘松玉, 朱志铎, 席培胜, 等. 钉形搅拌桩与常规搅拌桩加固软土地基的对比研究[J]. 岩土工程学报,2009,31(7):1059 − 1068. [LIU Songyu, ZHU Zhiduo, XI Peisheng, et al. Comparison between T-shaped deep mixing method and traditional deep mixing method for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering,2009,31(7):1059 − 1068. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4548.2009.07.012
    [4] 叶观宝, 蔡永生, 张振. 加芯水泥土桩复合地基桩土应力比计算方法研究[J]. 岩土力学,2016,37(3):672 − 678. [YE Guanbao, CAI Yongsheng, ZHANG Zhen. Research on calculation of pile-soil stress ratio for composite foundation reinforced by stiffened deep mixed piles[J]. Rock and Soil Mechanics,2016,37(3):672 − 678. (in Chinese with English abstract)
    [5] 白顺果, 侯永峰, 张鸿儒. 循环荷载作用下水泥土桩复合地基的临界循环应力比和永久变形分析[J]. 岩土工程学报,2006,28(1):84 − 87. [BAI Shunguo, HOU Yongfeng, ZHANG Hongru. Analysis on critical cyclic stress ratio and permanent deformation of composite foundation improved by cement-soil piles under cyclic loading[J]. Chinese Journal of Geotechnical Engineering,2006,28(1):84 − 87. (in Chinese with English abstract) doi:  10.3321/j.issn:1000-4548.2006.01.017
    [6] KIM A R, CHANG I, CHO G C, et al. Strength and dynamic properties of cement-mixed Korean marine clays[J]. KSCE Journal of Civil Engineering,2018,22(4):1150 − 1161. doi:  10.1007/s12205-017-1686-3
    [7] LIU F Y, ZHU K, HU X Q, et al. Experimental simple shear study of composite soil with cemented soil core[J]. Marine Georesources & Geotechnology,2019,37(8):960 − 971. DOI: 10.1080/1064119X.2018.1513614.
    [8] CAI Y Q, LIANG X. Dynamic properties of composite cemented clay[J]. Journal of Zhejiang University Science,2004,5(3):309 − 316. doi:  10.1631/jzus.2004.0309
    [9] 曾国红, 白晓红, 张卫平, 等. 增强体复合土动弹性模量影响因素的研究[J]. 水利学报,2009,40(5):576 − 582. [ZENG Guohong, BAI Xiaohong, ZHANG Weiping, et al. Experimental study on factors influencing the dynamic elastic modulus of composite soil with different reinforcements[J]. Journal of Hydraulic Engineering,2009,40(5):576 − 582. (in Chinese with English abstract) doi:  10.3321/j.issn:0559-9350.2009.05.010
    [10] 吕程伟. 水泥土动力特性的共振柱试验研究[D]. 武汉: 湖北工业大学, 2016.

    LYU Chengwei. Resonant column experimental study on dynamic properties of cemented clay[D]. Wuhan: Hubei University of Technology, 2016. (in Chinese with English abstract)
    [11] KAZEMIAN S, HUAT B B K, MOAYEDI H. Undrained shear characteristics of tropical peat reinforced with cement stabilized soil column[J]. Geotechnical and Geological Engineering,2012,30(4):753 − 759. doi:  10.1007/s10706-012-9492-7
    [12] CAI Y, XU L R, LIU W Z, et al. Field Test Study on the dynamic response of the cement-improved expansive soil subgrade of a heavy-haul railway[J]. Soil Dynamics and Earthquake Engineering,2020,128:105878. doi:  10.1016/j.soildyn.2019.105878
    [13] CHAI J C, SHRESTHA S, HINO T. Failure of an embankment on soil-cement column–improved clay deposit: investigation and analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2019,145(9):05019006. doi:  10.1061/(ASCE)GT.1943-5606.0002118
    [14] 温日琨, 王常晶, 陈云敏. 交通荷载引起的静偏应力对饱和软粘土变形影响[J]. 岩土力学,2009,30(增刊2):119 − 122. [WEN Rikun, WANG Changjing, CHEN Yunmin. Effect of traffic loading induced static deviator stress on deformation of saturated soft clay[J]. Rock and Soil Mechanics,2009,30(Sup2):119 − 122. (in Chinese with English abstract)
    [15] HYODO M, YASUHARA K. Analytical procedure for evaluation pore water pressure and deformation of saturated clay ground subjected to traffic loads[J]. Numerical Methods In Geomechanics,1988,6(1):653 − 658.
    [16] ZHUANG Y, LI S B. Three-dimensional finite element analysis of arching in a piled embankment under traffic loading[J]. Arabian Journal of Geosciences,2015,8(10):7751 − 7762. doi:  10.1007/s12517-014-1748-5
    [17] PHAM H V, DIAS D, DUDCHENKO A. 3D modeling of geosynthetic-reinforced pile-supported embankment under cyclic loading[J]. Geosynthetics International,2020,27(2):157 − 169. doi:  10.1680/jgein.18.00039
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  18
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-02
  • 网络出版日期:  2021-09-29

目录

    /

    返回文章
    返回