ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑非饱和浸润层厚度和累积入渗量的改进Green-Ampt模型

王雪冬 李世宇 孙延峰 张超彪 王翠 朱永东

王雪冬, 李世宇, 孙延峰, 张超彪, 王翠, 朱永东. 考虑非饱和浸润层厚度和累积入渗量的改进Green-Ampt模型[J]. 水文地质工程地质, 2021, 48(6): 64-71. doi: 10.16030/j.cnki.issn.1000-3665.202012045
引用本文: 王雪冬, 李世宇, 孙延峰, 张超彪, 王翠, 朱永东. 考虑非饱和浸润层厚度和累积入渗量的改进Green-Ampt模型[J]. 水文地质工程地质, 2021, 48(6): 64-71. doi: 10.16030/j.cnki.issn.1000-3665.202012045
WANG Xuedong, LI Shiyu, SUN Yanfeng, ZHANG Chaobiao, WANG Cui, ZHU Yongdong. An improved Green-Ampt model for rainfall infiltration in the inner dumping site of an open pit coal mine[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 64-71. doi: 10.16030/j.cnki.issn.1000-3665.202012045
Citation: WANG Xuedong, LI Shiyu, SUN Yanfeng, ZHANG Chaobiao, WANG Cui, ZHU Yongdong. An improved Green-Ampt model for rainfall infiltration in the inner dumping site of an open pit coal mine[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 64-71. doi: 10.16030/j.cnki.issn.1000-3665.202012045

考虑非饱和浸润层厚度和累积入渗量的改进Green-Ampt模型

doi: 10.16030/j.cnki.issn.1000-3665.202012045
基金项目: 国家重点研发计划项目(2017YFC1503102);国家自然科学基金项目(51604140;51974144);辽宁省教育厅基金项目(LJ2020FWL006);中国博士后基金项目(2018M631815)
详细信息
    作者简介:

    王雪冬(1984-),男,副教授,硕士生导师,主要从事矿山地质灾害防治研究。E-mail:jilindaxue318@163.com

  • 中图分类号: P641.2

An improved Green-Ampt model for rainfall infiltration in the inner dumping site of an open pit coal mine

  • 摘要: 矿山内排土场因其储量大、结构松散和强度低等特点,在降雨条件下极易产生侵蚀或整体失稳破坏,因此降雨入渗分析对预测内排土场稳定性至关重要。以元宝山露天煤矿内排土场为原型,按相似试验理论进行物理模型试验,研究降雨入渗特征,根据试验结果对经典Green-Ampt入渗模型进行改进。结果表明:雨水入渗过程中,随着浸润锋的向下运移,坡面侵蚀由溅蚀凹槽开始,逐渐过渡为径流侵蚀,最后呈现为溯源侵蚀破坏,整体呈现平行于坡表面的浅层滑坡特征;浸润锋之上非饱和浸润层的存在,导致经典Green-Ampt模型计算结果不准确;在考虑浸润层厚度和累积入渗量基础上,推导出改进的Green-Ampt模型;改进后的Green-Ampt模型为分段函数,能够反映降雨入渗使坡面由非饱和向饱和过渡的实际特征。验证结果显示,使用改进模型,浸润锋入渗深度和累积入渗量的预测精度显著提升,虽然冲蚀破坏和初始含水率的差异导致降雨入渗后期的预测精度有所下降,但相关结果对煤矿内排土场降雨初期稳定性分析具有重要意义。改进后的Green-Ampt模型的计算结果与实测数据更为接近,能为分析露天煤矿内排土场降雨入渗规律及边坡稳定性研究提供参考。
  • 图  1  研究区地质图(现场照片镜头西南朝向)

    Figure  1.  Geological map of the study area (on-site photo lens facing southwest)

    图  2  模型装置图

    Figure  2.  Model installation diagram

    图  3  模型试验及传感器布置图

    Figure  3.  Model test and sensors layout

    图  4  土料颗粒级配曲线图

    Figure  4.  Soil grading curve

    图  5  浸润锋运移时的坡表面侵蚀情况

    Figure  5.  Slope erosion during migration of the wetting peak

    图  6  体积含水率随时间的变化

    Figure  6.  Change in volume water content with time

    图  7  试验结果与经典模型计算结果的对比

    Figure  7.  Test results with those from the classical model

    图  8  入渗模型计算简图

    Figure  8.  Diagram showing infiltration model calculation

    图  9  土水特征曲线与渗透系数曲线

    Figure  9.  Soil water characteristic curve and permeability coefficient curve

    图  10  体积含水率随时间的变化曲线

    Figure  10.  Variation in volume moisture content with time

    图  11  浸润锋深度随时间变化的曲线

    Figure  11.  Variation with time for depth of the infiltration front

    图  12  累积入渗量和入渗深度变化曲线

    Figure  12.  Variation in the cumulative infiltration with the infiltration depth

    表  1  土料的物理力学参数

    Table  1.   Physical and mechanical parameters of the waste dump

    参数天然干密度/(g·cm−1天然含水率/%重度/(kN·m−3黏聚力/kPa内摩擦角/(°)饱和渗透系数/(cm·s−1
    取值1.6310.41735.422.50.0023
    下载: 导出CSV

    表  2  van Genuchten 模型拟合参数

    Table  2.   Fitting parameters of the van Genuchten model

    参数饱和体积含水率/%残余体积含水率/%αn拟合度(R2
    取值34110.121.940.9956
    下载: 导出CSV
  • [1] 杨洪才. 浅谈临时内排土场在露天矿生产中的应用[J]. 露天采矿技术,2003,18(1):4 − 5. [YANG Hongcai. Discussion on the application of temporary internal dump in open-pit mine production[J]. Opencast Coal Mining Technology,2003,18(1):4 − 5. (in Chinese) doi:  10.3969/j.issn.1671-9816.2003.01.002
    [2] 王雪冬, 李世宇, 孙延峰, 等. 冻融循环作用对露天矿排土场土料土水特征的影响[J]. 煤田地质与勘探,2019,47(5):138 − 143. [WANG Xuedong, LI Shiyu, SUN Yanfeng, et al. Influence of the freezing-thawing cycles on soil-water characteristics of soil in open-pit mine dumping sites[J]. Coal Geology & Exploration,2019,47(5):138 − 143. (in Chinese with English abstract) doi:  10.3969/j.issn.1001-1986.2019.05.019
    [3] 庄建琦, 彭建兵, 张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版),2013,43(3):867 − 876. [ZHUANG Jianqi, PENG Jianbing, ZHANG Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in loess plateau[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):867 − 876. (in Chinese with English abstract)
    [4] 陈洪凯, 唐红梅. 散体滑坡室内启动模型试验[J]. 山地学报,2002,20(1):112 − 115. [CHEN Hongkai, TANG Hongmei. Research on start-up of loose landslide in lab[J]. Journal of Mountain Research,2002,20(1):112 − 115. (in Chinese with English abstract) doi:  10.3969/j.issn.1008-2786.2002.01.020
    [5] 邱潇, 涂国祥, 赵石力, 等. 堆积体内部裂隙对降雨入渗的影响[J]. 长江科学院院报,2021,38(4):110 − 117. [QIU Xiao, TU Guoxiang, ZHAO Shili, et al. Effect of fissures in accumulation body on rainfall infiltration[J]. Journal of Yangtze River Scientific Research Institute,2021,38(4):110 − 117. (in Chinese with English abstract) doi:  10.11988/ckyyb.20200035
    [6] 王晓峰, 刘光焰, 刘均利, 等. 降雨入渗与滑坡关系研究综述[J]. 人民黄河,2006,28(8):25 − 27. [WANG Xiaofeng, LIU Guangyan, LIU Junli, et al. Review on the relationship between rainfall infiltration and landslide[J]. Yellow River,2006,28(8):25 − 27. (in Chinese) doi:  10.3969/j.issn.1000-1379.2006.08.013
    [7] 张勇, 温智, 程英建. 四川巴中市滑坡灾害与降雨雨型关系探讨[J]. 水文地质工程地质,2020,47(2):178 − 182. [ZHANG Yong, WEN Zhi, CHENG Yingjian. A discussion of the relationship between landslide disaster and rainfall types in Bazhong of Sichuan[J]. Hydrogeology & Engineering Geology,2020,47(2):178 − 182. (in Chinese with English abstract)
    [8] 史振宁, 戚双星, 刘登生. 考虑初始含水率分布的覆盖层边坡非饱和入渗过程与稳定性计算方法[J/OL]. 工程地质学报[2020-06-19].

    SHI Zhenning, QI Shuangxing, LIU Dengsheng. Unsaturated infiltration process and stability calculation method of overburden slope considering initial water content distribution[J/OL]. Journal of Engineering Geology[2020-06-19]. https://doi.org/10.13544/j.cnki.jeg.2020-009,2020-06-19. (in Chinese with English abstract)
    [9] 徐翔, 王义兴, 方正. 降雨和库水联合作用下边坡稳定性变化规律[J]. 中国地质灾害与防治学报,2019,30(2):51 − 58. [XU Xiang, WANG Yixing, FANG Zheng. Analysis on stability of a slope under rainfall and reservoir water level variation[J]. The Chinese Journal of Geological Hazard and Control,2019,30(2):51 − 58. (in Chinese with English abstract)
    [10] KALE R V, SAHOO B. Green-Ampt infiltration models for varied field conditions: a revisit[J]. Water Resources Management,2011,25(14):3505 − 3536. doi:  10.1007/s11269-011-9868-0
    [11] GREEN W H, AMPT G A. Studies of soil physics I.The flow of air and water through soils[J]. Journal of Agricultual Science,1911,4:1 − 24. doi:  10.1017/S0021859600001441
    [12] 王文焰, 汪志荣, 王全九, 等. 黄土中Green-Ampt入渗模型的改进与验证[J]. 水利学报,2003,34(5):30 − 34. [WANG Wenyan, WANG Zhirong, WANG Quanjiu, et al. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering,2003,34(5):30 − 34. (in Chinese with English abstract) doi:  10.3321/j.issn:0559-9350.2003.05.005
    [13] 温馨, 胡志平, 张勋, 等. 基于Green-Ampt模型的饱和-非饱和黄土入渗改进模型及其参数研究[J]. 岩土力学,2020,41(6):1991 − 2000. [WEN Xin, HU Zhiping, ZHANG Xun, et al. Modified infiltration model for saturated-unsaturated loess based on Green-Ampt model and its parametric study[J]. Rock and Soil Mechanics,2020,41(6):1991 − 2000. (in Chinese with English abstract)
    [14] 张杰, 韩同春, 豆红强, 等. 基于降雨入渗分层假定的黄土边坡稳定性分析[J]. 中南大学学报(自然科学版),2014,45(12):4355 − 4361. [ZHANG Jie, HAN Tongchun, DOU Hongqiang, et al. Stability of loess slope considering infiltration zonation[J]. Journal of Central South University (Science and Technology),2014,45(12):4355 − 4361. (in Chinese with English abstract)
    [15] 潘永亮, 简文星, 李林均, 等. 基于改进Green-Ampt模型的花岗岩残积土边坡降雨入渗规律研究[J]. 岩土力学,2020,41(8):2685 − 2692. [PAN Yongliang, JIAN Wenxing, LI Linjun, et al. A study on the rainfall infiltration of granite residual soil slope with an improved Green-Ampt model[J]. Rock and Soil Mechanics,2020,41(8):2685 − 2692. (in Chinese with English abstract)
    [16] 李三川, 王晨光, 白润才, 等. 元宝山露天煤矿内排土场变形特性研究[J]. 煤炭科学技术,2018,46(3):85 − 89. [LI Sanchuan, WANG Chenguang, BAI Runcai, et al. Study on deformation features of in-pit dumping site in Yuanbaoshan Surface Mine[J]. Coal Science and Technology,2018,46(3):85 − 89. (in Chinese with English abstract)
    [17] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Geotechnical test method standard:GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [18] 周必凡, 李德基, 罗德富, 等. 泥石流防治指南[M]. 北京: 科学出版社, 1991.

    ZHOU Bifan, LI Deji, LUO Defu, et al. Guidelines for debris flow prevention and control [M]. Beijing: Science Press, 1991. (in Chinese)
    [19] 王乐, 秦世伟. 不同降雨类型与库水位波动耦合作用下的土质滑坡稳定性分析[J]. 中国地质灾害与防治学报,2018,29(6):103 − 111. [WANG Le, QIN Shiwei. Landslide instability induced by sudden lower in water level combined with different rainfall types[J]. The Chinese Journal of Geological Hazard and Control,2018,29(6):103 − 111. (in Chinese with English abstract)
    [20] 苏永华, 李诚诚. 间歇性强降雨下基于Green-Ampt入渗模型的边坡稳定性分析[J]. 湖南大学学报(自然科学版),2020,47(3):28 − 36. [SU Yonghua, LI Chengcheng. Slope stability analysis based onGreen-Ampt infiltration model under intermittent heavy rainfall[J]. Journal of Hunan University (Natural Sciences),2020,47(3):28 − 36. (in Chinese with English abstract)
    [21] 陈卫金, 程东会, 陶伟. van Genuchten模型参数的物理意义[J]. 水文地质工程地质,2017,44(6):147 − 153. [CHEN Weijin, CHENG Donghui, TAO Wei. Physical significance of the parameters in the van Genuchten model[J]. Hydrogeology & Engineering Geology,2017,44(6):147 − 153. (in Chinese with English abstract)
    [22] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. doi:  10.1029/WR012i003p00513
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  24
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-03-30
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回