ISSN 1000-3665 CN 11-2202/P
  • 中文核心期刊
  • CSCD核心期刊
  • 中科双效期刊
  • 中国科技核心期刊
  • Caj-cd规范获奖期刊
欢迎扫码关注“i环境微平台”

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度电动淋洗法去除污染软土中铬试验研究

郑佳挺 刘立馗 王爱骅 王艳 刘干斌

郑佳挺, 刘立馗, 王爱骅, 王艳, 刘干斌. 考虑温度电动淋洗法去除污染软土中铬试验研究[J]. 水文地质工程地质, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056
引用本文: 郑佳挺, 刘立馗, 王爱骅, 王艳, 刘干斌. 考虑温度电动淋洗法去除污染软土中铬试验研究[J]. 水文地质工程地质, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056
ZHENG Jiating, LIU Likui, WANG Aihua, WANG Yan, LIU Ganbin. An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056
Citation: ZHENG Jiating, LIU Likui, WANG Aihua, WANG Yan, LIU Ganbin. An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 206-212. doi: 10.16030/j.cnki.issn.1000-3665.202010056

考虑温度电动淋洗法去除污染软土中铬试验研究

doi: 10.16030/j.cnki.issn.1000-3665.202010056
基金项目: 国家自然科学基金项目(51678311);浙江省自然科学基金项目(LY19E080011);宁波市社发重大项目(2017C510002)
详细信息
    作者简介:

    郑佳挺(1996-),男,硕士研究生,主要从事环境岩土工程研究。E-mail:2860508162@qq.com

    通讯作者:

    王艳(1985-),女,博士,副教授,主要从事环境岩土工程研究。E-mail:wangyan@nbu.edu.cn

  • 中图分类号: P614.69

An experimental study of removal of chromium from contaminated soft soil with the electrokinetic soil flushing method considering temperature and low voltage

  • 摘要: 针对铬污染软土,自行设计了电动淋洗试验装置,开展了铬污染软土室内土柱淋洗试验,分析了试验过程中电流、电解质溶液pH的变化以及淋洗液种类、外加电压、温度对重金属铬去除特性的影响。结果表明:电动淋洗试验可以有效去除土壤中的重金属铬;相对于单一淋洗试验,用10 V电压强化淋洗试验显著提高了重金属铬去除效果,淋洗液为十二烷基苯磺酸钠(SDS)时Cr(VI)和Cr(总)去除效率是单一淋洗法的2.79,3.12倍。当电压为10 V,温度升高至45 ℃时,淋洗液为柠檬酸(CA)和草酸(OA)的各组试验表明Cr(Ⅵ)与Cr(总)去除率均相应提高;而淋洗液为十二烷基苯磺酸钠时的试验组中Cr(VI)去除率提高了5.84%,Cr(总)去除率降低了4.25%,表明升高温度使部分Cr(VI)还原成不易迁移的Cr(III);淋洗液为草酸的试验组中升高温度时Cr(Ⅵ)与Cr(总)去除率最高,分别达到了82.08%、77.57%,分别相应提高了27.65%、26.01%。电动淋洗试验后,铬污染软土土粒结构变得更紧密,土粒之间的孔隙减小且被填充的更加密实。
  • 图  1  试验装置示意图

    Figure  1.  Schematic dirgrasm of the experimental apparatus

    图  2  电流随时间变化

    Figure  2.  Variation of electric currents with elapsed time

    图  3  淋出液收集室和淋洗室pH随时间变化

    Figure  3.  Variation of pH in leachates and leaching agents with elapsed time

    图  4  土样微观结构图像

    Figure  4.  Microstructure images of the soil samples

    表  1  试验分组

    Table  1.   Experimental groups

    编号淋洗液种类电压/V温度/℃
    SF0.5%KCl05
    SF-SDS0.5%KCl、0.5%SDS05
    SFEK-SDS0.5%KCl、0.5%SDS105
    SFEK45-SDS0.5%KCl、0.5%SDS1045
    SF-CA0.5%KCl、0.5%CA05
    SFEK-CA0.5%KCl、0.5%CA105
    SFEK45-CA0.5%KCl、0.5%CA1045
    SF-OA0.5%KCl、0.5%OA05
    SFEK-OA0.5%KCl、0.5%OA105
    SFEK45-OA0.5%KCl、0.5%OA1045
      注:淋洗液浓度为质量浓度。
    下载: 导出CSV

    表  2  土柱中Cr(Ⅵ)、Cr(总)残余浓度及能耗

    Table  2.   Residual concentration of Cr(VI)and Cr(total)in soil columns and energy consumption

    编号浓度/(mg·kg−1去除率/%能耗/
    (10−3 kW·h)
    消耗电能E/(kW·h·kg−1淋出液Cr
    (总)浓度/
    (mg·kg−1
    12345
    SFCr(Ⅵ)11111123107299986213.885.2
    Cr(总)1298131113771277101110.37
    SF-SDSCr(Ⅵ)969.6932.41022.41026529.225.349.44
    Cr(总)1066.8121213441192.862422.29
    SFEK-SDSCr(Ⅵ)50151137220118070.583.0614.9633.98
    Cr(总)53553146638621169.59
    SFEK45-SDCr(Ⅵ)30444837726722774.704.4722.8234.12
    Cr(总)41061961747721366.63
    SF-CACr(Ⅵ)936943.2951.6918579.627.8611.78
    Cr(总)967.21197.61184.4957.6825.626.68
    SFEK-CACr(Ⅵ)51061359939022761.022.4015.1224.22
    Cr(总)53365489674039754
    SFEK45-CACr(Ⅵ)49836231627916274.052.9117.2526.9
    Cr(总)66269573959928857.39
    SF-OACr(Ⅵ)961.21054.8879.6932.4493.227.9814.15
    Cr(总)1016.41114.8926.4967.2589.234.09
    SFEK-OACr(Ⅵ)63848255230316764.32.9716.4126.78
    Cr(总)76649780830731361.56
    SFEK45-OACr(Ⅵ)2982742181879882.082.4610.7942.3
    Cr(总)38835533929019877.57
    下载: 导出CSV
  • [1] HE J Y, HE C Q, CHEN X P, et al. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation[J]. Environmental Science and Pollution Research,2018,25(18):17682 − 17689. doi:  10.1007/s11356-018-1741-8
    [2] DHAL B, THATOI H N, DAS N N, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review[J]. Journal of Hazardous Materials,2013,250/251:272 − 291. doi:  10.1016/j.jhazmat.2013.01.048
    [3] HE Z, SHENTU U, YANG X, et al. Heavy metal contamination of soils: sources, indicators, and assessment[J]. Journal of Environmental Indicators,2015,9:17 − 18.
    [4] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability[J]. Science of the Total Environment,2018,633:206 − 219. doi:  10.1016/j.scitotenv.2018.03.161
    [5] 金依婷, 王艳, 李轲轲, 等. 络合剂淋洗Cu污染粉土的土柱试验研究[J]. 水文地质工程地质,2018,45(2):165 − 170. [JIN Yiting, WANG Yan, LI Keke, et al. A study of soil column experiments for copper contaminated silt flushed by chelating agents[J]. Hydrogeology & Engineering Geology,2018,45(2):165 − 170. (in Chinese with English abstract)
    [6] 董汉英, 仇荣亮, 赵芝灏, 等. 工业废弃地多金属污染土壤组合淋洗修复技术研究[J]. 土壤学报,2010,47(6):1126 − 1133. [DONG Hanying, QIU Rongliang, ZHAO Zhihao, et al. Sequential elution technique for remediation of multi-metal contaminated brownfield soils[J]. Acta Pedologica Sinica,2010,47(6):1126 − 1133. (in Chinese with English abstract) doi:  10.11766/trxb200906020241
    [7] ZHANG H J, GAO Y T, XIONG H B. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent[J]. Environmental Science and Pollution Research,2017,24(10):9506 − 9514. doi:  10.1007/s11356-017-8660-y
    [8] 郑复乐, 姚荣江, 杨劲松, 等. 淋洗液对沿海滩涂设施土壤重金属的洗脱效应[J]. 中国环境科学,2018,38(11):4218 − 4227. [ZHENG Fule, YAO Rongjiang, YANG Jinsong, et al. Eluting effects of different eluents on heavy metals in greenhouse soils from coastal mudflat area[J]. China Environmental Science,2018,38(11):4218 − 4227. (in Chinese with English abstract) doi:  10.3969/j.issn.1000-6923.2018.11.030
    [9] 曹晓雅, 曹俊雅, 李媛媛, 等. 表面活性剂对SRB修复Cr污染土壤的影响[C]//中国化工学会2013年学术年会. 南京, 2013: 477.

    CAO Xiaoya, CAO Junya, LI Yuanyuan, et al. Effect of surfactants on SRB repairing Cr contaminated soil[C]//China Chemical Industry Association 2013 Academic Annual Meeting. Nanjing, 2013: 477. (in Chinese with English abstract)
    [10] LI D, SUN D L, HU S Y, et al. Conceptual design and experiments of electrochemistry-Flushing technology for the remediation of historically Cr(Ⅵ)-contaminated soil[J]. Chemosphere,2016,144:1823 − 1830. doi:  10.1016/j.chemosphere.2015.09.077
    [11] LI D, JI G Z, HU J, et al. Remediation strategy and electrochemistry Flushing &reduction technology for real Cr(VI)-contaminated soils[J]. Chemical Engineering Journal,2018,334:1281 − 1288. doi:  10.1016/j.cej.2017.11.074
    [12] PENG G Q, TIAN G M. Using electrode electrolytes to enhance electrokinetic removal of heavy metals from electroplating sludge[J]. Chemical Engineering Journal,2010,165(2):388 − 394. doi:  10.1016/j.cej.2010.10.006
    [13] FU R B, WEN D D, CHEN X, et al. Treatment of decabromodiphenyl ether (BDE209) contaminated soil by solubilizer-enhanced electrokinetics coupled with ZVI-PRB[J]. Environmental Science and Pollution Research,2017,24(15):13509 − 13518. doi:  10.1007/s11356-017-8919-3
    [14] 蔡光华, 陆海军, 刘松玉. 温度梯度下压实黏土的水热迁移规律和渗透特性[J]. 东北大学学报(自然科学版),2017,38(6):874 − 879. [CAI Guanghua, LU Haijun, LIU Songyu. Moisture-heat migration laws and permeability of compacted clay under temperature gradient[J]. Journal of Northeastern University (Natural Science),2017,38(6):874 − 879. (in Chinese with English abstract) doi:  10.12068/j.issn.1005-3026.2017.06.023
    [15] 司马文霞, 骆玲, 袁涛, 等. 土壤电阻率的温度特性及其对直流接地极发热的影响[J]. 高电压技术,2012,38(5):1192 − 1198. [SIMA Wenxia, LUO Ling, YUAN Tao, et al. Temperature characteristic of soil resistivity and its effect on the DC grounding electrode heating[J]. High Voltage Engineering,2012,38(5):1192 − 1198. (in Chinese with English abstract)
    [16] 孟凡生, 王业耀. 铬(VI)污染土壤电动修复影响因素研究[J]. 农业环境科学学报,2006,25(4):983 − 987. [MENG Fansheng, WANG Yeyao. Influencing factors of electrokinetic remediation for chromium-polluted soils[J]. Journal of Agro-Environment Science,2006,25(4):983 − 987. (in Chinese with English abstract) doi:  10.3321/j.issn:1672-2043.2006.04.033
    [17] RUI D H, WU Z P, JI M, et al. Remediation of Cd- and Pb- contaminated clay soils through combined freeze-thaw and soil washing[J]. Journal of Hazardous Materials,2019,369:87 − 95. doi:  10.1016/j.jhazmat.2019.02.038
    [18] 郑凌逶, 谢新宇, 谢康和, 等. 电渗法加固地基试验及应用研究进展[J]. 浙江大学学报(工学版),2017,51(6):1064 − 1073. [ZHENG Lingwei, XIE Xinyu, XIE Kanghe, et al. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of Zhejiang University (Engineering Science),2017,51(6):1064 − 1073. (in Chinese with English abstract) doi:  10.3785/j.issn.1008-973X.2017.06.002
    [19] 闫峰, 刘合满, 梁东丽, 等. 不同土壤对Cr吸附的动力学特征[J]. 农业工程学报,2008,24(6):21 − 25. [YAN Feng, LIU Heman, LIANG Dongli, et al. Kinetic characteristics of hexavalent chromium apparent adsorption on different soils[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(6):21 − 25. (in Chinese with English abstract) doi:  10.3321/j.issn:1002-6819.2008.06.004
    [20] SAKELLARIOU L, PAPASSIOPI N. An approach to electrokinetic removal of Cr(VI) from soil and Kaolin samples[J]. Bulletin of Environmental Contamination and Toxicology,2018,101(6):718 − 724. doi:  10.1007/s00128-018-2432-3
    [21] KUMAR V, CHITHRA K. Removal of Cr(VI) from spiked soils by electrokinetics[J]. Research Journal of Chemistry and Environment,2013,17(8):52 − 59.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  28
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-11-20
  • 网络出版日期:  2021-11-01
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回